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DEPARTMENT OF MECHANICAL ENGINEERING
STRENGTH OF MATERIALS

Preamble

Engineering science is usually subdivided into number of topics such as
1. Solid Mechanics

2. Fluid Mechanics

3. Heat Transfer

4. Properties of materials and soon Although there are close links between them in terms of
the physical principles involved and methods of analysis employed.

The solid mechanics as a subject may be defined as a branch of applied mechanics that deals
with behaviours of solid bodies subjected to various types of loadings. This is usually
subdivided into further two streams i.e Mechanics of rigid bodies or simply Mechanics and
Mechanics of deformable solids.

The mechanics of deformable solids which is branch of applied mechanics is known by several
names i.e. strength of materials, mechanics of materials etc.

Mechanics of rigid bodies:

The mechanics of rigid bodies is primarily concerned with the static and dynamic behaviour
under external forces of engineering components and systems which are treated as infinitely
strong and undeformable Primarily we deal here with the forces and motions associated with
particles and rigid bodies.

Mechanics of deformable solids :
Mechanics of solids:

The mechanics of deformable solids is more concerned with the internal forces and associated
changes in the geometry of the components involved. Of particular importance are the
properties of the materials used, the strength of which will determine whether the components
fail by breaking in service, and the stiffness of which will determine whether the amount of
deformation they suffer is acceptable. Therefore, the subject of mechanics of materials or
strength of materials is central to the whole activity of engineering design. Usually the
objectives in analysis here will be the determination of the stresses, strains, and deflections
produced by loads. Theoretical analyses and experimental results have an equal roles in this
field.

Analysis of stress and strain :

Concept of stress : Let us introduce the concept of stress as we know that the main
problem of engineering mechanics of material is the investigation of the internal resistance of



the body, i.e. the nature of forces set up within a body to balance the effect of the externally
applied forces.

The externally applied forces are termed as loads. These externally applied forces may be due
to any one of the reason.

(1) due to service conditions

(i1) due to environment in which the component works

(ii1) through contact with other members

(iv) due to fluid pressures

(v) due to gravity or inertia forces.

As we know that in mechanics of deformable solids, externally applied forces acts on a body
and body suffers a deformation. From equilibrium point of view, this action should be opposed

or reacted by internal forces which are set up within the particles of material due to cohesion.

These internal forces give rise to a concept of stress. Therefore, let us define a stress Therefore,
let us define a term stress

Stress:

P{or F)

P{or F)
N

Let us consider a rectangular bar of some cross — sectional area and subjected to some load or
force (in Newtons )

Let us imagine that the same rectangular bar is assumed to be cut into two halves at section
XX. The each portion of this rectangular bar is in equilibrium under the action of load P and
the internal forces acting at the section XX has been shown
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Now stress is defined as the force intensity or force per unit area. Here we use a symbol [] to
represent the stress.
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Where A is the area of the X — section

Here we are using an assumption that the total force or total load carried by the rectangular bar
is uniformly distributed over its cross — section.

But the stress distributions may be for from uniform, with local regions of high stress known
as stress concentrations.

If the force carried by a component is not uniformly distributed over its cross — sectional area,
A, we must consider a small area, ‘d0A' which carries a small load 8P, of the total force ‘P',
Then definition of stress is

o= 5
8A

As a particular stress generally holds true only at a point, therefore it is defined mathematically
as

Units :

The basic units of stress in S.I units i.e. (International system) are N / m? (or Pa) MPa = 10° Pa
, GPa =10 Pa, KPa =10’ Pa

Some times N / mm? units are also used, because this is an equivalent to MPa. While US
customary unit is pound per square inch psi.

TYPES OF STRESSES :

Only two basic stresses exists : (1) normal stress and (2) shear shear stress. Other
stresses either are similar to these basic stresses or are a combination of these e.g. bending
stress is a combination tensile, compressive and shear stresses. Torsional stress, as encountered
in twisting of a shaft is a shearing stress.

Let us define the normal stresses and shear stresses in the following sections.
Normal stresses : We have defined stress as force per unit area. If the stresses are normal to

the areas concerned, then these are termed as normal stresses. The normal stresses are generally
denoted by a Greek letter ( [])
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This is also known as uniaxial state of stress, because the stresses acts only in one direction
however, such a state rarely exists, therefore we have biaxial and triaxial state of stresses where
either the two mutually perpendicular normal stresses acts or three mutually perpendicular
normal stresses acts as shown in the figures below :
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(Biaxial state of stress) = /
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(Triaxial state of stress)

Tensile or compressive stresses :

The normal stresses can be either tensile or compressive whether the stresses acts out of the

area or into the area
’,%'
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(Tensile stress)

.

(Compressive stress)

Shear stresses :

Let us consider now the situation, where the cross — sectional area of a block of material is
subject to a distribution of forces which are parallel, rather than normal, to the area concerned.
Such forces are associated with a shearing of the material, and are referred to as shear forces.
The resulting force interistes are known as shear stresses.



Forces acting parallel
to the area concerned

/

The resulting force intensities are known as shear stresses, the mean shear stress being equal
to

[
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Where P is the total force and A the area over which it acts.

As we know that the particular stress generally holds good only at a point therefore we can
define shear stress at a point as

lirn il
t - —
5A-0 84

The greek symbol t ( tau ) ( suggesting tangential ) is used to denote shear stress.
However, it must be borne in mind that the stress ( resultant stress ) at any point in a body is

basically resolved into two components and one acts perpendicular and other parallel to the
area concerned, as it is clearly defined in the following figure.

Shear failure of Rivetts

2.(Butt Joint) 1.{Lap Joint)
<2 | I : <P | T
(Double shear) (Single shear)
[ | T +5
<& | [ |'|' | 5 <] [T 1

The single shear takes place on the single plane and the shear area is the cross - sectional of the
rivett, whereas the double shear takes place in the case of Butt joints of rivetts and the shear
area is the twice of the X - sectional area of the rivett.



1.Find the stresses in each section of the bar shown in Fig. and

extension of the bar Shown in Fig. E = 2 x 10> N/mm?2. Take P=40KN.

Given: P

40 kN = 40,000 N;

20 mm;

300 mm; L,=250mm; L;=200mm

2 x 105 N/mm?

(ii) find the total

Stress at section CD:

Stress, o = Load =~ _ _F
*PCD T Area ¢
4 (D57
o %Q.M = 20.37 N/'mm?
7 (507
To find: (1) Stresses in each section, and
lcm = 20.37 Njmny? ] (2) Total extension of the bar.
We know that, © Solution: Stress at section AB:
L L
Total elongation, 8l = g[}\_: +;\L'2: +K§ ] Stress, O 5 = [Aii: b P = :O'OOO
) 3 (Dy)? 3 (20)?
O = 127.32 N/mm?
Stress at section BC:
Stcese. oo = Load _ P 40,000
o0 = eea- = .
A Ry § oy
| Opc = 31.83 N/mm? |
[ 30 250 200
= 02 - : e > - g
4 (D) 4 Dy 7 (D5)?
[ 300 250 200
= 0.2 - gy =
Result: ©,; = 127.38 N/mm? 3 (207 5 (40 7 (507
Opc = 31.8 N/mm? = 0.2[0.955 +0.199 + 0.101]
O6cp = 20.38 N/mm?
L = 0.25mm L_Change in length, 8L = 0.25 mm

D
A B I
D = . = T
»=40mm;  D;=50 mm D1=€0mm D;=40mm |D3=50mm [—>P
i
300 mm 250 mm 200 mm
Ly L2 L3




2. A member ABCD is subjected to point loads P, P2, P3, P4 as shown in fig. Calculate the
force P2 necessary for equilibrium, if Py =45 KN, P3 =450 KN and P4 = 139 KN. Determine
the total elongation of the member, assuming the modulus of elasticity to be 2.1 x 103 N/mm?
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Sol. Given :

Part AB : Area,
Length,

Part BC : Area,
Length,

Part CD : Area,
Length,

Value of

[~ 120cm —¢

Value of P, necessary for equilibrium

Resolving the forces on the rod along its axis (i.e., equating the forces acting towards
right to those acting towards left), we get

P,+P;=P,

Increase in length of AB

+P,

x 600

P 45000
=k 1= gmxaixior X120
= 0.4114 mm
Decrease in length of BC
__P g, -__320000
AE 2500 x 2.1x 10°
= 0.3657 mm
Increase in length of CD
130,000

X by = T
AE 1250 x 2.1x 10

= 0.4457 mm
Total change in the length of member
=0.4114 - 0.3657 + 0.4457

= 0.4914 mm (extension).

6l =0.4914mm

Thermal stresses, Bars subjected to tension and Compression

Compound bar: In certain application it is necessary to use a combination of elements or bars
made from different materials, each material performing a different function. In over head
electric cables or Transmission Lines for example it is often convenient to carry the current in
a set of copper wires surrounding steel wires. The later being designed to support the weight
of the cable over large spans. Such a combination of materials is generally termed compound

bars.

x 900

Ans.

b 250D 111s” — 1250mm”

Py

A, = 625 mm? and

L, =120 cm = 1200 mm
A, = 2500 mm? and

L, = 60 cm = 600 mm
A, = 1250 mm? and

Ly =90 cm = 900 mm
E =2.1 x 105 N/mm?.

(+ P =45KkN = 45000 N)

(- P =320 kN = 320000)

(= P =130 kN = 130000)

(Taking +ve sign for increase in length and

—ve sign for decrease in length)

| |

6em ——»¢—— C0cm ¥

A B
45 kN 45 kN

320 kN 320 kN
— ——

130 kN

130 kN



Consider therefore, a compound bar consisting of n members, each having a different length
and cross sectional area and each being of a different material. Let all member have a common
extension ‘X' i.e. the load is positioned to produce the same extension in each member.

s PP
’ o I// - ’//]
n"member
Length Ln
First member ;/ Area An
Modulus En
Le:gth k’ Load Fn
rea A1
Modulus E1 | |
Load P oo Bz s ol T e e T i T, Common
extension
W

Forthe'n' the members

Fl"l
stress _ E - A
strain n xn/ﬁ

Fo L,

An ¥

or F EnAnXn _ EnAnX
N L

Where F, is the force in the nth member and A, and L are its cross - sectional area and length.

(1)

Let W be the total load, the total load carried will be the sum of all loads for all the members.

Therefore, each member carries a portion of the total load W proportional of EA / L value.

if the length of each individual member in same then, we may write ~ 2EA

Thus, the stress in member 'l' may be determined as g1 =F;/ A4

Determination of common extension of compound bars: In order to determine the common
extension of a compound bar it is convenient to consider it as a single bar of an imaginary
material with an equivalent or combined modulus E..

Assumption: Here it is necessary to assume that both the extension and original lengths of the
individual members of the compound bar are the same, the strains in all members will than be
equal.

Total load on compound bar = F; + Fo+ F3 +......... + Fa

where F1, F 2 ,....,etc are the loads in members 1,2 etc

But force = stress . area,therefore

s(A1+Ax+...... +An)=s1Ar+s2 A+ ........ +sn An



Where s is the stress in the equivalent single bar

Dividing throughout by the common strain I .

g _ 04 o8 On
—(Ag+ A+ rAE A A L
e(' 2“‘*n)€1+E 2t EAn
e E (A + A+ L+ A= EA +E A + LB LA,
or E. = EvA + By + B A
© Ag+ Ay + v A
_ 2EA
A
with an external load YW applied stress in the equivalent bar may be computed as

or E,

stress =ﬂ
>A

strain inthe equivalent bar=%=m

c

hence commen extension ¥ =———
E.ZA

1.A Mild steel rod of 20 mm diameter and 300 mm long is enclosed centrally inside a hollow
copper tube of external diameter 30 mm and internal diameter 25 mm. The ends of the rod and
tube are brazed together, and the composite bar is subjected to an axial pull of 40 KN. If E for
steel and copper is 200 GN/m? and 100 GN/m? respectively, find the stresses developed in the
rod and the tube also find the extension of the rod.

GIVEN DATA

Dia of steel rod =20 mm

Areaof steel rod = Ag = % x20° =100z mm’

Area of Copper tube= A =%><(302 —252) =215.98 mm’

E=200GN / m*=200x10° N/mm’ ; E.=I00GN/m’=100x10’ N /mm’

TO FIND
Stresses on the tube and rod

Solution

P=Ds+Pc

50x10° =0.4; + 0. A,
50x10°=20..1007 +5,.215.98
0.=59.21 N/ mm’

oy =118.45N/mm’



2.A reinforced concrete column 50cm x 50cm in section is reinforced with 4 steel bars of 2.5¢cm
diameter, one in each corner. The column is carrying a load of 2 MN. Find the stresses in the
concrete and steel bars.

Take,
Modulus of Elasticity for steel E, = 2.1 x 10° N/mm?®
Modulus of Elasticity for concrete E, = 1.4 x 10¢ N/mm?

Given:
Concrete column dimensions = 50 ¢cm x 50 cm
= 500 mm x 500 mm

Diameter of steel bar, D, = 2.5 cm =25 mm

Load, P = 2 MN=2x 10N
E. = 2.1 x 105 N/mm?

s

E. = 1.4 x 10* N/mm?

C

To find: Stresses in the concrete and steel bars.

© Solution: Area of column= 500 mm x 500 mm
= 25 x 10* mm?2
= 2500 cm?
| Area of column = 25 x 104 mm? | = =
L L]

Area of steel, A, = % x (25)

= 4.90 x 102 mm?
For four steel bar, A, = 4x490 x 102 mm?

5

= 1963.4 mm?
I Area of steel, A, = 1963.4 mmz—]

. Area of concrete = Area of column — Area of steel
= 250000 - 1963.4
2,48,036.6 mm? |

[ Area of concrete, A,

We know that,
Total load, P = Load on steel bar + Load on concrete
2MN = P, +P,
[2x106 = P +P, A 7
We know that,
Change in length of steel bar = Change in length of concrete
PS LS . PC LC
= AS ES - AC EC
The length of steel bar and concrete are equal.
So, L, = L,
P. P.
= AS ES N AC EC
P P

5
1963.4x 2.1 x 105~ 248036.6 x 1.4 x 10%

[P, = 0.118P,




Substituting in (A),

(A) = 2% 100 = P,+P,
2x 105 = 0.118P,+P,
[P, = 1.78x 105N |
= P, = (0.118)x 1.78 x 106
[P, = 021x 105N |
S Ib _ Load Py 021x106
tress on steel bar, 6, = == = A, - 19634
[ Stress on steel bar, 5, = 106.96 N/mmzl
_ Load P, 1.78x106
Stress on concrete, 6, = At A, = 5480366
Stress on concrete, s, = 7.18 N/mm2]
Result: Stress on steel bar, 6, = 106.96 N/mm?
Stress on concrete, 6, = 7.18 N/mm?

Compound bars subjected to Temp. Change : Ordinary materials expand when heated and
contract when cooled, hence , an increase in temperature produce a positive thermal strain.
Thermal strains usually are reversible in a sense that the member returns to its original shape
when the temperature return to its original value. However, there here are some materials which
do not behave in this manner. These metals differs from ordinary materials in a sence that the
strains are related non linearly to temperature and some times are irreversible .when a material
is subjected to a change in temp. is a length will change by an amount.

di=a.Lt

or TF a.Ltors+E .at

G AALLLL L

&
a = coefficient of linear expansoin for the material
L = original Length t = temp. change

Thus an increase in temperature produces an increase in length and a decrease in
temperature results in a decrease in length except in very special cases of materials with zero
or negative coefficients of expansion which need not to be considered here.

If however, the free expansion of the material is prevented by some external force, then
a stress is set up in the material. They stress is equal in magnitude to that which would be
produced in the bar by initially allowing the bar to its free length and then applying sufficient
force to return the bar to its original length.

Change in Length=a Lt

Therefore, strain=alLt/L

at



Therefore ,the stress generated in the material by the application of sufficient force to remove
this strain

=strain X E
or Stress=Eat

Consider now a compound bar constructed from two different materials rigidly joined together,
for simplicity.

Let us consider that the materials in this case are steel and brass.

Steel

Brass

If we have both applied stresses and a temp. change, thermal strains may be added to those
given by generalized hook's law equation —e.g.

ex=é[ox-)(oy+az)]+o@.t
ex=1E[o,,-)(ox +az)]+ou1t

g, = 1E[crz - o, + oy)] + ot

While the normal strains a body are affected by changes in temperatures, shear strains are not.
Because if the temp. of any block or element changes, then its size changes not its shape
therefore shear strains do not change.

In general, the coefficients of expansion of the two materials forming the compound bar will
be different so that as the temp. rises each material will attempt to expand by different amounts.
Figure below shows the positions to which the individual materials will expand if they are
completely free to expand (i.e not joined rigidly together as a compound bar). The extension
of any Length L is given by a L t



Assume O, > O,

N
{a) Orignal bar Stesi
Brass
3 Steel
A O L.t
L —~-
| oLk
—
N
(b} Expanded position members Steel |B (v
free to expand inrepently Brass
R Steel |
Extension of F = . .
I steel Compression
- of brass
N D
(e) Expanded position of the Steel
Compound bar Brass
R Stee

In general, changes in lengths due to thermal strains may be calculated form equation d; = a Lt,
provided that the members are able to expand or contract freely, a situation that exists in
statically determinates structures. As a consequence no stresses are generated in a statically
determinate structure when one or more members undergo a uniform temperature change. If in
a structure (or a compound bar), the free expansion or contraction is not allowed then the
member becomes s statically indeterminate, which is just being discussed as an example of the
compound bar and thermal stresses would be generated.

Thus the difference of free expansion lengths or so called free lengths

=apL.t-as.L.t

=(ap-as)L.t

Since in this case the coefficient of expansion of the brass ag is greater then that for the steel as.
the initial lengths L of the two materials are assumed equal.

Conclusion 1.
Extension of steel + compression brass = difference in “ free” length

Applying Newton 's law of equal action and reaction the following second Conclusion also
holds good.

Conclusion 2.

The tensile force applied to the short member by the long member is equal in magnitude to the
compressive force applied to long member by the short member.

Thus in this case
Tensile force in steel = compressive force in brass

These conclusions may be written in the form of mathematical equations as given below:



forconclusion
oL ogl _
E. =
forconclusion2
0..A, = 05Ap

{og - o)Lt

Using these two equations, the magnitude of the stresses may be determined.

1.A steel rod of 20mm diameter passes centrally through a copper tube of 50mm external
diameter and 40mm internal diameter. The tube is closed at each end by rigid plates of
negligible thickness. The nuts are tightened lightly home on the projecting parts of the rod. If
the temperature of the assembly is raised by 50°C, calculate the stress developed in copper and
steel. Take E for steel and copper as 200 GN/m? and 100 GN/m? and a for steel and copper as
12 x 10 per °C and 18 x 107 per °C.

GIVEN DATA

Dia of steel rod =20mm

Areaof steel rod = A, =%>< 20° =100z mm®

Areaof Copper tube= A, =% X (502 —40° ) =225 mm’

Riseof temperatureT =50°C

E=200GN / m*=200x10° N /mm’*; E.=I00GN/m’=100x10" N /mm’
a,=12x10" per °C :  a,=18x10"° per °C

TO FIND

Stresses developed in the steel

SOLUTION

oy.Ay=0..4;

oo d. 2257
Os= — —Tono ‘Oc
A, 1007

oy =2.250,

ayTL+%§L=aOTL+%?L
S C

12x10$x50+55%22§=18xuy6x50+——9i—7
200x10 100x10

o.=14117N / mm’

o, =31.76 N/ mm’



ELASTIC CONSTANTS

In considering the elastic behavior of an isotropic materials under, normal, shear and
hydrostatic loading, we introduce a total of four elastic constants namely E, G, K, and [ .

It turns out that not all of these are independent to the others. In fact, given any two of them,
the other two can be foundout . Let us define these elastic constants

(1) E = Young's Modulus of Rigidity

= Stress / strain
(i1) G = Shear Modulus or Modulus of rigidity
= Shear stress / Shear strain
(ii1)) p = Possion's ratio
u = lateral strain / longitudinal strain
(iv) K = Bulk Modulus of elasticity
= Volumetric stress / Volumetric strain
Where
Volumetric strain = sum of linear stress in X, y and z direction.
Volumetric stress = stress which cause the change in volume.
Let us find the relations between them

Relation between E, G and K :

The relationship between E, G and K can be easily determined by eliminating [ from the
already derived relations

E=2G(l+p)andE=3K(1-2pn)

Thus, the following relationship may be obtained

9 GK

EBK +G)

1.Determine the change in length, breadth and thickness of a steel bar 4m long, 30mm wide
and 20mm thick, when subjected to an axial pull of 120KN in the direction of its length. Take
E=200GPa and Poisson’s ratio = (.3.



Given:  Length,L = 4 m=4000 mm;

Wide, b = 30 mm
Thickness, 7 = 20 mm;
Axial pul,P = 120 kN =120 x 103N

Young’s Modulus, E = 200 GPa
= 200 x 109 Pa =200 x 10° N/m?
= 200 x 103 N/mm?;
Poisson’s ratio, 1/m = 0.3

To find: 1. Change in length, 5L,

2. Change in breadth, 85,

3. Change in thickness, 5¢.
© Solution: We know that,
. Tensile stress

Young’s Modulus, E = Tensile strain
i
o
o] P Load P
} = = = — . o= — e —
= 200x10 e, Ae [ Stress ¢ O
120 x 103
¥
= 200x10° = 5roadth x Thickness x ¢;
120 x 103
, - =
200100 - I
Tensile strain or} _ Change in length _ 3L
Longitudinal strain | ~  Original length ~ L
SL 5L
e = 2000 = %107 = 3000 C>[3L = 4mm]
Lateral strain e

=t

Poisson’s ratio =

Longitudinal strain ¢,

= 03 = X0
1e, = 3Ix lO“‘J
Lateral dimension, e, = §5Ig_ or §;l‘
= e,=%:3xl°"‘=§—g
Ehange in breadth, 85 = 9 x 10~ mm |

5
e = :3x10"=%

[Change in thickness, 57 = 6 x 10~ mm |
Result: Change in length, 3. = 4 mm

Change in breadth, 55 9 x 1073 mm
Change in thickness, 87 = 6 x 10~ mm




Volumetric strains in terms of principal stresses:

As we know that
_ 5 Oy G3
€5 — = L—%= - n—=>
TE PEME
=% _ % _ 93
2T F "HETHE
_ 03 G Oy
e = - — - =
3TE PEME

FutherVolumetricstrain =g, + e, + e,

_ oy +og +o3) 2oy +o; +o3)

E

- oy roy +oy)(1-24

E
hencethe

E

Yolumetric strain =

(oy +o, +o,)(1 -2

E

L .
Q
~

N

A bar of 30mm diameter is subjected to a pull of 60KN. The measured extension on gauge
length of 200mm is 0.09mm and the change in diameter is 0.0039. Calculate the Poisson’s ratio
and value of three moduli.

Given:  Diameter,d = 30 mm;
PulL,P=60kN=60x 10° N
Length, L = 200 mm;
Change in length, 8L = 0.09 mm
Change in diameter, 84 = 0.0039 mm
To find: 1. Poisson’s ratio, 1/m,

2. Young’s Modulus, E,
3. Bulk Modulus, K,
4. Modulus of Rigidity, G.

© Solution: We know that,

. o1
Poisson’s ratio, =¥

Lateral strain, e,

Lateral strain

Longitudinal strain

Longitudinal strain, ¢,

L o5
m e
8b 8d &t
=‘b—0r7 or"t"
_ 8d _ 0.0039
T d T 30
le, = 13x10-4]
_ 8L _ 0.09
T L T 200
le, = 4.5x10-4]

(D



We know that,

Young’s Modulus, E 2G ( 1+ 7"; )
2G(1+0.28)
7.0 x 10* N/mm? |

= 1.8 x 108
|G

Young's Modulus, E = 3 K( 1= '3‘1)

= 1.8x10° = 3K[1-2(0.28)]

| K = 1.36 x 105 N/mm? |

Substituting e, e, values in equation (1),

1 13x10°4
= m  45x10-4

| Poisson’s ratio, 1/m = 0.28 |

Tensilestress o

Young’s Modulus, E = Tensile strgin. — e

= 0.28

N - Spessq - Load _P
Ae T
60 x 103

§d2x4.5xI0‘4

60 x 103
-} (301 x 4.5 x 10-4

1.8 x 105 N/mm? |

LE

A rod of length 1m and diameter 20mm is subjected to a tensile load of 20KN. The increase in
length of the rod is 0.30 mm and the decrease in diameter is 0.0018 mm. Calculate the poisson’s

ratio and three moduli.

Given: Rod length, L = I m = 1000 mm

Diameter, d = 20 mm
Load, P = 20kN = 20x 103N
Change in length, 3. = 0.30 mm

Change in diameter, 84 = 0.0018 mm

To find: 1. Poisson’s ratio (1/m).
2. Young’s modulus (E).
3. Bulk modulus (K).
4. Modulus of rigidity (G).



©Solution: We know that,

Poisson’s ratio, (1/m1)

Lateral strain
Longitudinal strain

1 €
= = B2
m e,
: db od &t
Lateral strain, e, = Y (or) a (or) T
_dd _ 0.0018
=~ g 20
le, = 90x 10 |
_— ) L 30
Longitudinal strain, e; = §f = %36—0
= | e, = 300x 10 |
Substituting e, , e, values in equation (1),
| 1 _ 90x10°5
M=% = 300x10%
1
=0 0.3
| Poisson’s ratio (1/m) = 0.3 |

We know that,

Young’s modulus, E

|: Stress, o =

= E =

Tensile stress
Tensile strain

(6] P

€

Load P ]

Area A
20 x 103
d? x 300 x 106

s
4

20 x 103
% (20)2 x 300 x 10-6

| E

2.12 x 105 N/mm? |

We know that,

Young’s modulus, E

= 2.12x 103
2.12 x 105

20(1+%)

2xG(1+0.3)
26G

5. (1)



= G 8.15 x 104 N/mm?
| Modulus of rigidity, G = 8.15 x 10* N/mm? |

We know that,
2
3k(1-2)

3x K [1-2x(0.3)]
1.76 x 105 N/mm?
| Bulk modulus, K = 1.76 x 105 N/mm? |
Result: 1. Poisson’s ratio, 1/m = 0.3
2. Young’s modulus, E = 2.12 x 105 N/mm?2
3. Modulus of rigidity, G = 8.15 x 10* N/mm?
4. Bulk modulus, K = 1.76 x 105 N/mm?

Young’s modulus, E
= 212 %10

= K

A steel plate 300mm long, 60mm wide and 30mm deep is acted upon by the forces shown in
figure. Determine the change in volume. Take E = 200 KN/mm? and Poisson’s ratio = 0.3.

. 75 KN
Given: Length x =300 mm; Width y =60 mm 1
Depth z =30 mm; >
Load in the direction of x = 50 kN f}mm !
= 50x 103N 0 ists 50 KN
Load in the direction of y = —80 kN /ﬂ
= —80x 103N SORN
300 mm

[+ Compressive load]
Load in the direction of z = 75kN = 75x 103 N
Young’s modulus E = 200 kN/mm?2 = 2 x 105 N/mm?
Poisson’s ratio (1/m) = 0.3

To find: Change in volume (dV).
©Solution:

Load in x direction
yxz

50 x 103

60 x 30

o, = 27.77 N/mm? |

3 Bk Load in y direction
Stress in y direction a; = L
XXz

- 80 x 103
300 x 30

o, = —888 N/mm?

Stress in x direction ¢, =

Load in z direction
XXy

75 x 103

300 x 60

| 6, = 4.16 N/mm? l

Stress in z direction o, =

We know that,

: dV 1 2
Change in volume v =g (c,+0,+0,) [ L= :'



av 1
= ¥V = 32105 @777-8.88+4.16) x [1 -2 x(0.3)]
av

= v = 46.1 x 106

= | dV = 46.1x10%V ]

= dV = 46.1x108xxxyxz [ V=xxyxz]
= dV = 46.1 x 106 x 300 x 60 x 30

= dV = 24.89 mm3

Result: Change in volume dV = 24.89 mm?




UNIT-II
TORSION & SPRINGS

3.1 Torsion of Circular Shafts

a. Simplifying assumptions

During the deformation, the cross sections are not distorted in any manner they remain
plane, and the radius r does not change. In addition, the length L of the shaft remains constant.

Figure 3.1

Deformation of a circular shaft caused by the torque T. The initially straight line AB deforms
into a helix.

Based on these observations, we make the following

Assumptions:

+ Circular cross sections remain plane (do not warp) and perpendicular to the axis of the shaft.
+ Cross sections do not deform (there is no strain in the plane of the cross section).

+ The distances between cross sections do not change (the axial normal strain is zero).

Each cross section rotates as a rigid entity about the axis of the shaft. Although this conclusion

is based on the observed deformation of a cylindrical shaft carrying a constant internal torque,


Karthik
Typewritten text
TORSION & SPRINGS


we assume that the result remains valid even if the diameter of the shaft or the internal torque
varies along the length of the shaft.

b. Compatibility

Because the cross sections are separated by an infinitesimal distance, the difference in
their rotations, denoted by the angle 46, is also infinitesimal.

As the cross sections undergo the relative rotation d0, CD deforms into the helix CD.
By observing the distortion of the shaded element, we recognize that the helix angle yis the
shear strain of the element.

@)
From the geometry of Fig.3.2(a), we obtain DD’= p d6=ydx , from which the shear strain v is

3.1)
do

V=a

The quantity db/dx is the angle of twist per unit length, where 0 is expressed in radians. The
corresponding shear stress, illustrated in Fig. 3.2 (b), is determined from Hooke's law:
(3.2)

CCvec do
T= y - dx p
strain of a material element caused by twisting of the shaft;

(b) the corresponding shear stress.

the shear stress varies linearly with the radial distance p from the axial of the shaft.



_c _Gde
t=ur= dx

The variation of the shear stress acting on the cross section is illustrated in Fig. 3.3. The
maximum shear stress, denoted by

Tmax , occurs at the surface of the shaft.

Note that the above derivations assume neither a constant internal torque nor a constant cross

section along the length of the shaft.

Figure 3.3 Distribution of shear stress along the radius of a circular shaft.

s '

e ——

Tmax

Fig. 3.4 shows a cross section of the shaft containing a differential element of area d4 loaded
at the radial distance p from the axis of the shaft.

Figure 3.4 Calculating the Resultant of the shear stress acting on the cross section.
Resultant is a couple equal to the internal torque 7.



The shear force acting on this area is dP = tdA = G (db/dx) p dA, directed perpendicular
to the radius. Hence, the moment (torque) of dP about the center o is p dP = G (d0/dx) p dA.
Summing the contributions and equating the result to the internal torque yields.

fdezT

Gdef 2dA=T
dx p -

Recognizing that is the polar moment of inertia of the crosssectional area, we can write this
equation as G (d0/dx) J=T, or

e T

dx GJ

The rotation of the cross section at the free end of the shaft, called the angle of twist 0 , is
obtained by integration:

0 j-LdH LTd
= = —ax
0 OG]

As in the case of a prismatic bar carrying a constant torque, then reduces the torque-twist
relationship
g = TL

=G
G (dO/dx) = T/J , which substitution into Eq. (3.2),

do
T=6G0y=0G Ix
gives the shear stress t acting at the distance p from the center of the shaft, Torsion formulas
Tp
T=—
J
The maximum shear stress tmax is found by replacing p by the radius 7 of the shatft:
Tr

Tmax -

Because Hook's law was used in the derivation of Egs. (3.2)- (3.5), these formulas are valid if
the shear stresses do not exceed the proportional limit of the material shear. Furthermore, these
formulas are applicable only to circular shafts, either solid or hollow.

The expressions for the polar moments of circular areas are
Solid shaft

2T 16T
Tnas = 703 = o

Hollow shaft

2T 16T
n(R*—1%) m(D*—d*)

Tmax -




Hollow shaft
Solid shaft

4 4
_nrt  nd _ o 4T Hd A
Y =, R ’) 32(D @)

Figure 3.6 Polar moments of inertia of circular areas.

Shafts are used to transmit power. The power { transmitted by a torque T rotating at the angular
speed o is given by { =T o,
where o is measured in radians per unit time.

If the shaft is rotating with a frequency of f revolutions per unit time, then ® = 2 /', which
gives { =T (2n f). Therefore, the torque can be expressed as

s
T—ﬁ

Composite shafts: (in series)

If two or more shaft of different material, diameter or basic forms are connected together in
such a way that each carries the same torque, then the shafts are said to be connected in series
& the composite shaft so produced is therefore termed as series — connected.

A o

Here in this case the equilibrium of the shaft requires that the torque ‘T' be the same through
out both the parts.

In such cases the composite shaft strength is treated by considering each component shaft
separately, applying the torsion — theory to each in turn. The composite shaft will therefore be
as weak as its weakest component. If relative dimensions of the various parts are required then
a solution is usually effected by equating the torque in each shaft e.g. for two shafts in series

Gyt _ Gadatly

T=
L1 L2

In some applications it is convenient to ensure that the angle of twist in each shaft are equal
dod o Lk

1.e. [J1= [z, so that for similar materials in each shaft L L L4,

The total angle of twist at the free end must be the sum of angles [11 = [1, over each x - section



Composite shaft parallel connection: If two or more shafts are rigidly fixed together such
that the applied torque is shared between them then the composite shaft so formed is said to be
connected in parallel.

Fixed
end

For parallel connection.

Total Torque T =T+ T

Tkt _ Tabe
In this case the angle of twist for each portion are equal and Gpli G2y
T - Gidi

for equal lengths(as is normaly the case for parallel shafts) Tz G
This type of configuration is statically indeterminate, because we do not know how the applied

torque is apportioned to each segment, To deal such type of problem the procedure is exactly
the same as we have discussed earlier,

Thus two equations are obtained in terms of the torques in each part of the composite shaft and
the maximun shear stress in each part can then be found from the relations.

- TR,

T
= T2R2
Th

T

T2

A solid circular shaft is required transmit 95kW at 150rpm. Find out the diameter of the shaft
if permissible shear stress is 60MPa and angle of twist is 0.3° per meter length. Take C=1 x
10° N/mm?.
Given Data
P=agskl
N =180pm
8 -p2 X%o - 59X vad

=\ m
T = 60MPa = fON/mnt

C =1 X0° Njmm>



sole .

P = 2TNT
6o
Qs . 2w x160XT
| 60

T

1]

f-0A kN-M = 6'0AX\06‘.N—mm

cage 1) Cengidowy Shat sbwss (o

s A 3
T 6 TxD

6-0ax 10’ = ,'T_';. Y 60 X>°

T ®
N| A
b .3
6 -0AX10 x10® x5 2.X10
= el S
e 1000

,'D— = IOA-Q,mﬂU

Suwlable  amebd & 104 0-mm

A hollow shaft with diameter ratio 3/5 is required transmit 450 kW at 120rpm. The shearing
stress in the shaft must not exceed 60 N/mm? and the twist in a length of 2.5 m is not to exceed

1°. Calculate the minimum external diameter of the shaft. C= 80 N/mm?.

Given Data
?:AGOLN _d; - -g— = D=lbbA
N =120 P b d-=06P

- = o NJom™
| =92-5Mn= 2800M®

@:\'1“/)'.80 = 0’01745

C = &N mm*



Solt

. 2WNT
P 60
kSO = 2T AV2ZD AT
6o
T= 35.80 kww-m = 86'80)\l06N—mm
coge ) T =T o, ph _ gk
Ib D
Iy
3% .80%10° - X x 60 - Dbr‘@'bD.
16 D
D -1sl-70mm
coge ) T _ ¢C
3J 2
25- 80)(\06 g0X 0 'ONAS
2500

T oh gb)
T @D
D = 94350:68mm

o Mmoo D =930- 68 mm

d = 558408 mm

A hollow shaft having an inside diameter 60% of its outer diameter, is to replace a solid shaft

transmitting in the same power at the same speed. Calculate percentage saving in material, if

the material to be is also the same.
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Design a suitable diameter for a shaft required to transmit 120KW at 180 rpm. The shear stress
in the shaft not to exceed 70N/mm? and the maximum torque exceeds the mean by 40%.

Calculate the angle of twist in a length of 2m. Take C= 0.8 x 10° N/mm?.

120 kW

180 rpm

70 N/mm?2

= 2m=2000 mm
il £ L .

0.8 x 105 N/mm?

Given data:

~ ey 2
| Il Il

max

@)
I



To find: Angle of twist (0)
©Solution: We know that,

2nNT
Power, P = 60
2xmx 180 x T
120 = 60
T = 6.36 kN-m
= 6.36 x 103 N-m
= 6.36 x 106 N-mm

T = Tphean = 6.36 x 106 N-mm

We know that,

= 14T,,,=1.4x6.36x 106

max

= 8.912 x 106 N-mm

max

We know that,

Torque, T = 1n—6 x T x D3

T%x70xD3

86.54 mm |

8.91 x 106

Il

[ Shaft diameter, D

Consider angle of twist,
T Co
¥ =7 saai(L)

Where, J (polar moment of inertia) = 31:_2 (D)

8912x10° 0.8x105x6

th= = = 72000
33 xD*
8.912x 105 _ 0.8x105x0
5"5 x (86.54)* g
= 0 = 0.040 rad |

0 = 0.040 x 1—20' =23

| Angle of twist, 0 = 2.3°]
Result: Angle of twist, 0 = 2.3°




Stresses in Helical Springs of Circular
Wire

-—
=

D = Mean diameter of the spring coil,

—tag—

W
d = Diameter of the spring wire, - + 2 [ "
n = Number of active coils, ¢ ! ,Zi =
G = Modulus of rigidity for the spring ‘;‘) | (_;, =i |
material, f} —® | : | = [ \
W = Axial load on the spring, ) ' ? ‘Z %,)7 |
T = Maximum shear stress induced in the ' ‘t - ) —»|
wire, o W
C = Spring index = D/d, _ , (b) Free hody diagram showing that wire
p = Pitch of the coils, and A9 Axally Jondod helicl spring 1s subjected to torsional shear and 4
& = Deflection of the spring, as a result of an To e
axial load W.

The elongation of the bar is
5 64WR3n

cd*
Notice that the deformation 6 is directly proportional to the applied load P. The ratio of P

to & is called the spring constant k and is equal to

w_ cd
8§ 64R3n

Springs in Series

For two or more springs with spring laid in series, the resulting spring constant k is given by

v,

Springs in Parallel

For two or more springs in parallel, the resulting spring constant is

K=K1+K2



A close coiled helical spring is to have a stiffness of 1.5 N/mm of compression under a
maximum load of 60 N and maximum shearing stress of 125 N/mm?. The solid length of the

spring (ie., when the coils are touching) is to be 50 mm. Find the diameter of the wire, mean

diameter of the coil and no. of coil required. Take C= 4.5x10* N/mm?.

ly
okiPfuss K = S

6o R*0
A b

\!

Vil 5 AR AW
ba R® ™
g,.\asx\o'3= i -

gon
shoaf Sbwge « _  gwp | bWR

-

wd 2 nd 2
126 = \bxboxR
md ®
0-h0qo = % o kow nd =860
d- E2
n
S‘Lb dVQIML W eﬁf\@&@
R3n5 s G BseXT &
3
A = ~‘5|'|7—':X|0 - @
Swb R value "
5 i
(CL'L:’X_'_O ) W - 2.q30x10"
n

n = lAba =18

pamelty of (ol D= 32 T72mm

Dlael of wied. = 3-42mm

OR

Derive the relation for deflection of a closely coiled helical spring subjected to an axial
downward load W.
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A closely coiled helical spring of mean diameter 20cm is made of 3cm diameter rod and has
16 turns. A weight of 3kN is dropped on this spring. Find the height by which the weight should

be dropped before striking the spring so that the spring may be compressed by 18cm. Take C=
8 x 10* N/mm?.
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In open coiled helical spring consists of 12 coils, the stress due to bending and twisting are 75

MPa and 92 MPa respectively. When the spring is axially loaded, find the maximum
permissible load and diameter of wire for a maximum extension of 25mm. Assume spring index

as 9. Take E =210 GPa and C = 80GPa.

Cos’s , 2850
(o E
)

Mok dopleshion g . HAWRD Seca
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shawf strese T - JDWR coset
wd ®
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A closed coil helical spring made out of 8mm diameter wire has 18 coils. Each coil is of 80mm
mean diameter. If the maximum allowable stress in the spring is 140Mpa, determine the
allowable load on the spring, elongation of the spring and stiffness of the spring. Take C = 82

KN/mm?

Given data:
d

8 mm
18

80 mm

1l

n
D

O A
Il I

To find: (i) W
(i) &

(i) K

140 Mpa = 140 x 106 N/m? = 140 N/mm?
82 kN/mm? = 82 x 103 N/mm?

©Solution: We know that shear stress of the closed coil

helical spring

_8WD
TS oad
B 8 x W x 80
140 = ——n(8)3
DW= 140 x T x 83
a . 8 x 80

Deflection of the spring
§WD3n

8= "Cca

= 351.86 N



_ 8x351.86 x 80° x 18

82 x 103 x 8° =77.24 mm
Stiffness of the spring
W
=3
351.86
= 9704 4.55 N/mm
Result:

Allowable load on the spring, W = 351.86 N
Deflection of the spring, 8 = 77.24 mm
4.55 N/mm

Stiffness of the spring, K

A laminated spring carries a central load of 5S200N and it is made of ‘n’ number of
plates,80mm wide, 7mm thick and length S00mm. Find the number of plates, if the
maximum deflection is 10mm. Let E = 2x10°N/mm>

Given:

W=5200N

b=80mm

t=7mm

L=500mm

d=10mm

E = 2x10°N/mm?

w.K.t stress.

3wl
= 2nbt?

3x5200x500x103

v ZnxB0x10-3(7x10-3)2
994.89x10°
0 = m———

n

The equation for deflection is,

Ls__ol"
~ AEt

994 89x10°x(500x10-%)%
105102 = 489x10°(500x10-4)

nxdx2x 10 x7x10-3

_994.89x10°x(500x107%)?
T 10x103x4x2x10 M x7x 107

n

3l 248.72x10°
n = TTR0x10°

n = 4.44 =5 coils



UNIT-III
THIN CYLINDERS.SPHERES AND THICK CYLINDERS

Members Subjected to Axisymmetric Loads

Pressurized thin walled cylinder:

Preamble : Pressure vessels are exceedingly important in industry. Normally two types of
pressure vessel are used in common practice such as cylindrical pressure vessel and spherical
pressure vessel.

In the analysis of this walled cylinders subjected to internal pressures it is assumed that the
radial plans remains radial and the wall thickness dose not change due to internal pressure.
Although the internal pressure acting on the wall causes a local compressive stresses (equal to
pressure) but its value is neglibly small as compared to other stresses & hence the sate of stress
of an element of a thin walled pressure is considered a biaxial one.

Further in the analysis of them walled cylinders, the weight of the fluid is considered neglible.

Let us consider a long cylinder of circular cross - section with an internal radius of R ; and a
constant wall thickness‘t' as showing fig.

This cylinder is subjected to a difference of hydrostatic pressure of ‘p' between its inner and
outer surfaces. In many cases, ‘p' between gage pressure within the cylinder, taking outside
pressure to be ambient.

By thin walled cylinder we mean that the thickness‘t' is very much smaller than the radius
Ri and we may quantify this by stating than the ratio t / R; of thickness of radius should be less
than 0.1.

An appropriate co-ordinate system to be used to describe such a system is the cylindrical polar
one 1, [1, z shown, where z axis lies along the axis of the cylinder, r is radial to it and [1[Jis
the angular co-ordinate about the axis.

The small piece of the cylinder wall is shown in isolation, and stresses in respective direction
have also been shown.

Type of failure:

Such a component fails in since when subjected to an excessively high internal pressure. While
it might fail by bursting along a path following the circumference of the cylinder. Under normal
circumstance it fails by circumstances it fails by bursting along a path parallel to the axis. This
suggests that the hoop stress is significantly higher than the axial stress.



In order to derive the expressions for various stresses we make following
Applications :

Liquid storage tanks and containers, water pipes, boilers, submarine hulls, and certain air plane
components are common examples of thin walled cylinders and spheres, roof domes.

ANALYSIS :In order to analyse the thin walled cylinders, let us make the following
assumptions :

* There are no shear stresses acting in the wall.
* The longitudinal and hoop stresses do not vary through the wall.
+ Radial stresses [J; which acts normal to the curved plane of the isolated element are neglibly
<)

. R 20
small as compared to other two stresses especially when L™
The state of tress for an element of a thin walled pressure vessel is considered to be biaxial,
although the internal pressure acting normal to the wall causes a local compressive stress equal
to the internal pressure, Actually a state of tri-axial stress exists on the inside of the vessel.
However, for then walled pressure vessel the third stress is much smaller than the other two
stresses and for this reason in can be neglected.

Thin Cylinders Subjected to Internal Pressure:

When a thin — walled cylinder is subjected to internal pressure, three mutually perpendicular
principal stresses will be set up in the cylinder materials, namely

 Circumferential or hoop stress

* The radial stress

* Longitudinal stress

now let us define these stresses and determine the expressions for them
Hoop or circumferential stress:

This is the stress which is set up in resisting the bursting effect of the applied pressure and can
be most conveniently treated by considering the equilibrium of the cylinder.

Projected P
area - d l




In the figure we have shown a one half of the cylinder. This cylinder is subjected to an internal
pressure p.

ie. p = internal pressure
d = inside diameter
L = Length of the cylinder
t = thickness of the wall
Total force on one half of the cylinder owing to the internal pressure 'p'
=p x Projected Area
=pxdxL
=pd.L (1)
The total resisting force owing to hoop stresses on set up in the cylinder walls
=2o0u.Lt = e 2)
Because [Jop.L.t. is the force in the one wall of the half cylinder.
the equations (1) & (2) we get
2.on.L.t=p.d.L

on=(p.d)/2t

Circumferential or hoop
Stress (on) = (p .d)/ 2t

Longitudinal Stress:

Consider now again the same figure and the vessel could be considered to have closed ends
and contains a fluid under a gage pressure p. Then the walls of the cylinder will have a
longitudinal stress as well as a circumferential stress.

— Oy ~
r——— —
-— e
< . - d
l<—— p p—™
e — —
— O g

Total force on the end of the cylinder owing to internal pressure
= pressure X area

=p x nd* /4

Area of metal resisting this force = nd.t. (approximately)

because [1d is the circumference and this is multiplied by the wall thickness



TLIS acting over
this area

Consider a free £
bhody digaram of — >

the cyclinder when
cut by a transverse plane

This is the area where is
resisting these force. Chviously
this areais n.d.t

Hence the longitudnal stresses

force _ [p x nd®/4)

Setup=
area mdt

=pd g aL =pd
4 4t
or alternatively fromequilibriumconditions

Thus|o, ==—

Change in Dimensions :

The change in length of the cylinder may be determined from the longitudinal strain.

Since whenever the cylinder will elongate in axial direction or longitudinal direction, this will
also get decreased in diameter or the lateral strain will also take place. Therefore we will have
to also take into consideration the lateral strain.as we know that the poisson's ratio (v) is

_ - lateral strain
longitudnal strain

where the -ve sign emphasized that the change is negative

Consider an element of cylinder wall which is subjected to two mutually o' normal stresses
oL and oH .

Let E = Young's modulus of elasticity

Ox

GL Ou

On



Resultant Strainin longitudnaldirection =

recalling

_pd _pd
o Tn= 5

€, (longitudnal strain) = 4_Edt[1_2 V]

ar
Changein Length =Longitudalstrain x original Length
=g, .L
pd _pd

Similatly the hoop Strain€,= é (o -vao)= E = VT

d
f_zﬂp ﬂ

Infact €, is the hoop strain if we just go by the definition then

_ Changein diametre _ &d
Originaldiametre  d

where d =original diameter.
if we are interested to find out the change in diametre then
Changein diametre =<, .Original diametre
i.e &d —ez d substituting the value of &; we get

sd=T—[2-v].d

—4tE

2
=51EP-H

. =p.d2 ]
i.e|6d 4.’(.E[2 v]

Volumetric Strain or Change in the Internal Volume:

When the thin cylinder is subjected to the internal pressure as we have already calculated that
there is a change in the cylinder dimensions i.e, longitudinal strain and hoop strains come into
picture. As a result of which there will be change in capacity of the cylinder or there is a change
in the volume of the cylinder hence it becomes imperative to determine the change in volume

or the volumetric strain.
The capacity of a cylinder is defined as
V = Area X Length

=nd%4 x L

Let there be a change in dimensions occurs, when the thin cylinder is subjected to an internal

pressure.
(1) The diameter d changestodd + o d

(i1) The length L changesto o L + 6 LL

Therefore, the change in volume = Final volume - Original volume



_n 2 n 2
=—[d+ad]*.(L+6L) - —d*.L
4[+ ]°.(L+6L) 1

: —[d+6&d]* . (L+6L) - —d°.L
Yolumetric strain=Changeleume= 4 4

Original volume fdz.L
{[d+6df.(L+oL)-d* L} | (& +8d +2d 8d).(L +6L) - o L]
ST gL ) gL

simplifying and neglecting the products and squares of smallquantities,ie. 6d & 6L

hence
_2déd.L+8Ld* 8L . 6d

+2. —
d?L L d

By definition G—LL =Longitudnal strain

5—dd= hoop strain, Thus

|VOIu metric strain = longitudnal strain +2 x hoop strain|

on substituting the value of longitudnal and hoop strains we get

=ﬂ - :ﬂ -
=3 4tE[1 ] & g 4tE[1 2v]

Ic= =£ - ﬂ -
or Volumetric =g, +2¢&, 4tE[1 2v]+2.[4tE[1 211]]

=P 12y 44 -2} = P15 4]
#E 4E

i i =ﬂ - :p_d -
Yolumetric Strain 4tE[E 4v) or ey 4tE[5 4y]

Therefore to find but the increase in capacity or volume, multiply the volumetric strain by
original volume.

Hence

Change in Capacity / Volume  or

. d
| | =p_5-4 v
ncreaseinvolume 4tE[ V]

Cylindrical Vessel with Hemispherical Ends:
Let us now consider the vessel with hemispherical ends. The wall thickness of the cylindrical
and hemispherical portion is different. While the internal diameter of both the portions is

assumed to be equal

Let the cylindrical vassal is subjected to an internal pressure p.



For the Cylindrical Portion

hoop or circumferential stress=o ¢ 't"here synifies the cylindrical portion.
=pd
2t
longitudnal stress= g,
= pd
4t
hoop or circumferential strain €, = O%C - v%= %[2—:}]
- _pd
or g, =—|2-v
=22

Because of the symmetry of the sphere the stresses set up owing to internal pressure will be
two mutually perpendicular hoops or circumferential stresses of equal values. Again the radial

stresses are neglected in comparison to the hoop stresses as with this cylinder having thickness
to diameter less than1:20.

Consider the equilibrium of the half — sphere

Force on half-sphere owing to internal pressure = pressure x projected Area
=p. nd*/4
Resisting force =g, . md.t,

nd?

——=gy,.ndt
p 1 H 2

= 0y (fursphere)=%

- -1 _ T _ pd _ pd
similarly the hoop stram—E[o., - v.a"]—€[1 —v]—ﬁﬂ -v]or ezs—ﬁ[% v]




Fig — shown the (by way of dotted lines) the tendency, for the cylindrical portion and the
spherical ends to expand by a different amount under the action of internal pressure. So owing
to difference in stress, the two portions (i.e. cylindrical and spherical ends) expand by a
different amount. This incompatibly of deformations causes a local bending and sheering
stresses in the neighbour hood of the joint. Since there must be physical continuity between the
ends and the cylindrical portion, for this reason, properly curved ends must be used for pressure
vessels.

Thus equating the two strains in order that there shall be no distortion of the junction

pd _ pd t, _1-v
ooyl = [- =
e T aelY]

But for general steel works v = 0.3, therefore, the thickness ratios becomes

t2/t1=0.7/1.7 or

1.e. the thickness of the cylinder walls must be approximately 2.4 times that of the hemispheroid
ends for no distortion of the junction to occur.

SUMMARY OF THE RESULTS : Let us summarise the derived results

(A) The stresses set up in the walls of a thin cylinder owing to an internal pressure p are :
(1) Circumferential or loop stress

on = pd/2t

(i1) Longitudinal or axial stress

oL = pd/4t

Where d is the internal diameter and t is the wall thickness of the cylinder.

then

Longitudinal straineL=1/E [0 000 v Or]

Hoop stainen=1/E | Ou 0 vO DL |

(B) Change of internal volume of cylinder under pressure

= P45 _guv
#E

(C) Fro thin spheres circumferential or loop stress



Thin rotating ring or cvlinder

Consider a thin ring or cylinder as shown in Fig below subjected to a radial internal pressure p
caused by the centrifugal effect of its own mass when rotating. The centrifugal effect on a unit
length of the circumference is

p=mo’r

Fig 19.1: Thin ring rotating with constant angular velocity ®

Here the radial pressure ‘p'is acting per unit length and is caused by the centrifugal effect if its
own mass when rotating.

Thus considering the equilibrium of half the ring shown in the figure,
2F = p x 2r (assuming unit length), as 2r is the projected area

F=pr

Where F is the hoop tension set up owing to rotation.

The cylinder wall is assumed to be so thin that the centrifugal effect can be assumed constant
across the wall thickness.

F = mass x acceleration=m ®?>r x r

This tension is transmitted through the complete circumference and therefore is resisted by the
complete cross — sectional area.

Hoop stress = F/A=m ®?r?/ A
Where A is the cross — sectional area of the ring.

Now with unit length assumed m/A is the mass of the material per unit volume, i.e. the
density p .

hoop stress = p ®? r?

6H = p. ®? . r?
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o,+0 0, -0
oy = | —2 | +| ==L [cos28
2 2

Te-AC.1=[1,cosfsind - o, sinficosd JAC

Te = (04 - 0 )sinfcosd

(ox'ay) .
= ————sin2é
5——sin
0,-0
or Te=( a "')sin26
2
(0, - 0y)
Tmaxz 12 L

Material subjected to combined direct and shear stresses:

A

Oy
Txy _loy+oy) (o, -0,)
T 04 = cos2f
A B °TT T2
P Txy -a
L T 0oy sin 28
2
g, +0 g, -0
0 o 04 Lot oy) (o ")00326+ Ty SIN28
(o) B 2
xy Jy - @ .
! 0 C Ty = %sm% - Ty, L0528
IX,’
y Oy

, - do
Foro,to be a maximum or minimum d—; =0

Now
g, +0 o, -0
Ue=( x "‘)+( x 1")00928+ Ty 5IN28
2 2
% = -15(01 - 0,)sin282+ 71, 005262

=0
ie.-(o, - 0,)sin28+ 7, cos282=0

Ty C08282 = (0, - 0,])sin28

27
Thus, tan28 = — %
(0x - oy)




GRAPHICAL SOLUTION - MOHR'S STRESS CIRCLE
The transformation equations for plane stress can be represented in a graphical form known as
Mohr's circle. This graphical representation is very useful in depending the relationships

between normal and shear stresses acting on any inclined plane at a point in a stresses body.

To draw a Mohr's stress circle consider a complex stress system as shown in the figure

Oy
Txy
A B
T4 P Txy
(8] Ox
(e 11]
D «—+—— C
y Oy

The above system represents a complete stress system for any condition of applied load in two
dimensions

ot

Ty 1

Y

1.The stresses at a point in a strained material is Px = 200 N/mm?2 and Py = -150 N/mm?2
and q= 80 N/mm?. Find the principal plane and principal stresses. Using graphical
method and verify with analytical method. (Solve both methods)

© Solution: Graphical method:

1. Draw a horizontal line

and set off OA and OB X

equal to o, and o, on c A
opposite sides to the S o= F 1"
scale, since both the

stresses are opposite to S

each other.



2. Bisect BA at C.

3. Draw perpendicular line AS from A which is equal to
shear stress. 80 N/mm? and to the same scale draw BR
from B.

4. With C as centre and CS as radius draw a circle. This is
known as Mohr’s circle.

4. By measurement, we find

Major principal stress, 6,, = OH =215 N/mm?

Analytical method:
Major principal stress,

O’|+O'2 1
m= T3tV (e -0 +4g

o

= 210 L2 P00 IS0 + 4(S0F

217.4 N/mm?
Minor principal stress,

O'.""O'z 1

Cuz = 7 3 "2'\](<5|"‘32)2'*'442
200-150 1
» —i—é- -5\ [200 = (~150)]2 + 4(80)*
= -167.4 N'mm?
Location of principal plane,
s A
oGO
__2x80
200+ 150
tan20 = 0.457
= 20 = 2456 = 0 = 12.28° or 102.28°

OG = - 165 N/mm?
ZSCA =24.5°
12.25°

Minor principal stress, ¢,

Location of principal plane, 20
0

Results: From the above two methods we found that both
the answers were very close to each other.

Major principal stress, 6, = 217.4 N/mm?
Minor principal stress, 6,,, = —167.4 N/mm?
12.28° or 102.28°

Location of principal plane, 6



At a point in a strained material, the principal stresses are 100 N/mm? tensile and 60 N/mm?
compressive. Calculate the normal stress, shear stress and resultant stress on a plane inclined

at 50 degree to the axis of major principal stress.

Given:
o, = 100 N/mm?
G, = —60N/mm?

(i.e., compressive)
50°

)

0, —>

To find: Normal stress, shear stress and resultant stress on 50°

inclined plane.
© Solution:

6,t06; 0,-0,
Normal stress, 6, = ) 5 cos20
[From equation (1.50)]
100-60 100 «(—60
= + =00 cos (2 x 50)
2 2
= 20+ 80 cos 100°
o, = 6.108 N/mm?2
Tangential or shear stress,
_ 91~%z
o, = 5 xsin20
100 — (60
= 42—2x sin (2 x 50)
= 80 x sin 100
= 78.78 N/mm?
| o, = 78.78 N/mm?
Resultant stress, 6,,, = 0'21 + 0',2 [From equation (1.52)]

</ 6.1082 + 78.782

res

79.02 N/mm?2

Results:

Normal stress, G,

Shear stress, o,

Resultant stress, ¢,

6.108 N/mm?2
78.78 N/mm?2
79.02 N/mm?



A point in a strained material is subjected to mutually perpendicular stresses of 600 N/mm?
(tensile) and 400 N/mm? (compressive). It’s also subjected to a shear stress of 100 N/mm?.
Draw the Mohr’s circle & find the principle stress & max. shear stress from diagram.
To find: From Mohr’s circle,
1. Principal stresses
2. Maximum shear stress
© Solution: [

1. Draw a horizontal line and R
set off OA and OB equal to
600 N/mm? and 400 N/mm? c A
on the opposite side to some : '
scale, since both stresses are
opposite side to each other.

2.. Bisect BA. at C

3. Draw perpendicular line AS or RB which is equal to shear
stress 100 N/mm? to the same scale.

4. With C as centre and CS as radius, draw a circle. This is
known as Mohr’s circle.

5. Draw a line CG' perpendicular to AB, which will gives the
maximum shear stress value.

By measurement,

OH = 610 N/mm?2
OG =-410 N/mm?

Maximum shear stress, (G,) .« = CG'=510 N/mm?

Major principal stress, G,

Minor principal stress, 6,5

A 5mm thick aluminium plate has a width of 300mm and a length of 600mm subjected to pull
of 15000N and 9000N respectively in axial and transverse direction. Determine the normal,
tangential and resultant stresses on a plane 40 degree to the greatest stress.

Given: 1P2
Width, & = 300 mm T
P 509
Lengtha l = 600 mm ] g f e — P1
Thickness, ¥ = 5 mm ‘
Axial load, P, = 15000 N P,

Transverse load, P, = 9000 N

To find: Normal (o), tangential (c,) and resultant stresses on a
plane 40° to the greatest stress.



© Solution: Analytical method:

Axial load
Area

15000
e 2
5 % 300 10 N/mm

Transverse load 9000
Area ~ 600x5

Axial stress, 6, =

Transverse stress, 6, =

= 3 N/mm?

6, +*6, 6,-0;
Normal stress, 6, = 5 + ) cos 20

[From equation (1.50)]

In this problem maximum stress is ¢ which is horizontal.

Therefore, 0 = 90°—40°=50° to the vertical
10+3 10-3
= 0,= "5 +75 cos (2 x 50°)
= 5.89 N/mm?
: Sy—0y -
Tangential stress, o, = 3 x sin (20)

-3
= i x sin 100°

2
o, = 3.447 N/mm?
- 2 4 2
Resultant stress, ©,,, = o +a,

= /5.892+3.4472
G,,. = 6.82N/mm?2

res



Graphical method:

10 N/mm?
-

10 N/mm2
A T

3 N/mm?2

1. Draw two perpendicular lines meeting at O representing the
direction of stresses 10 N/mm? and 3 N/mm?2.

2. With O as centre, draw two concentric circles of radii OA
and OB equal tor10 N/mm?2 and 3 N/mm? to some scale.

3. Draw the line XY through O which makes an angle 50° with
the plane of 3 N/mm? stress.

4. From O, draw the line OCD which is perpendicular to the
line XY and meeting the circle at C and D.

5. Draw DE perpendicular to OA and draw CF perpendicular to
DE.

6. Join OF which is equal to resultant stress o,,, across the
plane XY.

7. From F, draw a line FG perpendicular to OD.
By measurements,

Normal stress, ¢, = OG = 6 N/mm?
Tangential stress, o, = GF = 3.4 N/mm?

Resultant stress, ¢,,. = OF = 6.9 N/mm?

res
Result:

Normal stress, 6, = 6 N/mm?
Tangential stress, 6, = 3.4 N/mm?2

Resultant stress, o,,. = 6.9 N/mm?

res

At a point in a strained body subjected to two mutually perpendicular normal tensile stresses
of magnitude 30MPa and 12MPa accompanied by a shear stress of 16MPa. Locate the principal
planes and evaluate the principal stresses. Also calculate maximum shear stress. Check your
answer in graphical method using Mohr’s circle.



Given: o, = 30 MPa = 30 N/mm?
o, = 12MPa = 12 N/mm?

q = 16 MPa

12 N/mm?

A
16 NNmm?2 €«——F——

30 N/mm?2 b% -1—> 30 N/mm?2

———F—» 16 N/mm2
\ J

L 12 N/mm?2

To find: 1. Location of principal planes, 6
2. Principal stresses, 6,,, G,,,

3. Maximum shear stress, o, ..

. © Solution: Analytical method:
For this case, by using relation,

tan 20 = =l ..
C;—0;
2x16

tan20 = 0-12 1.797
20 = 60° 38’

6 = 30°19 or 120 19’

Major principal stress,

g;+oy 1
Om = — 3 +33/(0;-0 P +4¢
4
= 30212 +%\f(30-12)2+4x162
G, = 39.36 N/'mm?

nl

Minor principal stress,

o,t0, 1
Cw2 = = 3 —“2'\/(01—02)2+4q2
+
= 30212-%\/(30—12)2+4x162

G,; = 2.642 N/mm?



Maximum shear stress,

1
(G{)max = —2-\/(0[_02)2+4q2

= %\/(30—-12)2+4x 162
(C)max = 18.36 N/mm?

Mohr’s Circle Method:

. Draw a horizontal line and set off OA and OB equal to the
stresses 30 N/mm? and 12 N/mm? on the same side to some
suitable scale, since both are tensile stresses.

2. Bisect BA at C.

3. From A and B draw perpendicular lines AS and RB which is
equal to shear stress 16 N/mm? to the same scale as shown in
Fig.

4. With C as center and CS or CR as radius draw a circle which
meets the horizontal line at G and H.

By measurement,
Major principal stress,

o,; = OH = 39.5 N/mm?
Minor principal stress,

G, = OG = 2.625 N/mm?

. ) Mohr’s Circle
Location of principal stresses
Angle ZSCA = 20 = 60°
6 = 30° or 120°

Maximum shear stress,
(0)max = CSorCR=18.5 N/mm?

Results:

8 Location of principal planes, 6 = 30° 19" or 120° 19’
2. Major principal stress, 6,;, = 39.36 N/mm?

3 Minor principal stress, 6,, = 2.642 N/mm?

4. Maximum shear stress, (0,) .« = 18.36 N/mm?



UNIT-1V
TRANSVERSE LOADING ON BEAMS AND STRESSES IN BEAM

A beam is a [[structural element]] that primarily resists loads applied laterally to the
beam's axis. Its mode of deflection is primarily by bending. The loads applied to the beam
result in reaction forces at the beam's support points. The total effect of all the forces acting on
the beam is to produce shear forces and bending moments within the beam, that in turn induce
internal stresses, strains and deflections of the beam. Beams are characterized by their manner
of support, profile (shape of cross-section), equilibrium conditions, length, and their material.

Types of beams

1. Simply supported — a beam supported on the ends which are free to rotate and have no
moment resistance.

2. Fixed — a beam supported on both ends and restrained from rotation.

Over hanging — a simple beam extending beyond its support on one end.

4. Double overhanging — a simple beam with both ends extending beyond its supports on
both ends.

5. Continuous — a beam extending over more than two supports.

Cantilever — a projecting beam fixed only at one end.

7. Trussed — a beam strengthened by adding a cable or rod to form a truss.

[98)

S

Beam Types

% Types of beams- depending on how they are »
supported. — -

[ : A— _SIL ’ 5=
(a) Cantilever = E =

(b) Simply supported

: - =
’ ) =
o I A L L L Z

(c) Overhanging (d) continuous |

[ Rectangular section]

| — .=

[ Triangular section]

irculular [ Channel X - section]

[
X - section]

[0} v gnnd (f) Cantilever, simply supported

Types of Transverse loading on Beams;


https://en.wikipedia.org/wiki/Structural_load
https://en.wikipedia.org/wiki/Bending
https://en.wikipedia.org/wiki/Reaction_force
https://en.wikipedia.org/wiki/Shear_force
https://en.wikipedia.org/wiki/Bending_moment
https://en.wikipedia.org/wiki/Truss
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Cantilever
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Point load Inclined

point load

Beam o

77@77 |

(b)

%w (kNirn)

length ————s=

(d)

LT

(f)

Concept of Shear Force and Bending moment in beams:

When the beam is loaded in some arbitrarily manner, the internal forces and moments are
developed and the terms shear force and bending moments come into pictures which are helpful
to analyze the beams further. Let us define these terms
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Fig 1

Now let us consider the beam as shown in fig 1(a) which is supporting the loads P, P>, P3 and
is simply supported at two points creating the reactions Rj and R> respectively. Now let us
assume that the beam is to divided into or imagined to be cut into two portions at a section AA.
Now let us assume that the resultant of loads and reactions to the left of AA is ‘F' vertically
upwards, and since the entire beam is to remain in equilibrium, thus the resultant of forces to
the right of AA must also be F, acting downwards. This forces ‘F' is as a shear force. The
shearing force at any x-section of a beam represents the tendency for the portion of the beam
to one side of the section to slide or shear laterally relative to the other portion.

Therefore, now we are in a position to define the shear force ‘F' to as follows:

At any x-section of a beam, the shear force ‘F' is the algebraic sum of all the lateral components
of the forces acting on either side of the x-section.

Sign Convention for Shear Force:

The usual sign conventions to be followed for the shear forces have been illustrated in figures
2 and 3.

F

The resultant force which is in the downward
direction and is towards the R.H.S of the
X-section is +ve Shear Force.

The resultant force which is in upward
direction and is towards the L.H.S of the
X-section is +ve Shear Force

P--mm——————————————————— >

Fig 2: Positive Shear Force



F

The resultant force which are in the downward
direction and is on the L.H.S of the X-section
is -ve Shear Force.

The resultant force which are in upward
direction and is on the R.H.S of the

A
|
I
I
|
]
I
[}
|
|
[}
[}

|
[}
[}
}
[}
[}
|
[}
[}
I
: X-section is -ve Shear Force.
A

Fig 3: Negative Shear Force

Bending Moment:
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ﬂ
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|
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(b) A
Fig 4

Let us again consider the beam which is simply supported at the two prints, carrying loads P,
P> and P3 and having the reactions R and R: at the supports Fig 4. Now, let us imagine that the
beam is cut into two potions at the x-section AA. In a similar manner, as done for the case of
shear force, if we say that the resultant moment about the section AA of all the loads and
reactions to the left of the x-section at AA is M in C.W direction, then moment of forces to the
right of x-section AA must be ‘M' in C.C.W. Then ‘M'is called as the Bending moment and is
abbreviated as B.M. Now one can define the bending moment to be simply as the algebraic
sum of the moments about an x-section of all the forces acting on either side of the section

Sign Conventions for the Bending Moment:

For the bending moment, following sign conventions may be adopted as indicated in Fig 5
and Fig 6.
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Resultant moment on the L.H.S of Resultant moment on the R.H.S postion Resultant moment on the L.H.S of Resultant moment on the R.H.8 of

the X-section is C.W, then itis a of the X-section is C.C.W, then it may be the X-section is C.C.W, then itis a the X-section is C.W, then itis a

positive B.M considered as posilive B.M negative B.M negative B.M
Fig5:Positive Bending Moment Fig 6: Negative Bending Moment

Some times, the terms ‘Sagging' and Hogging are generally used for the positive and negative
bending moments respectively.

Procedure for drawing shear force and bending moment diagram:
Preamble:

The advantage of plotting a variation of shear force F and bending moment M in a beam as a
function of ‘x' measured from one end of the beam is that it becomes easier to determine the
maximum absolute value of shear force and bending moment.

Further, the determination of value of M as a function of ‘x' becomes of paramount importance
so as to determine the value of deflection of beam subjected to a given loading.

Construction of shear force and bending moment diagrams:

A shear force diagram can be constructed from the loading diagram of the beam. In order to
draw this, first the reactions must be determined always. Then the vertical components of forces
and reactions are successively summed from the left end of the beam to preserve the
mathematical sign conventions adopted. The shear at a section is simply equal to the sum of all
the vertical forces to the left of the section.

When the successive summation process is used, the shear force diagram should end up with
the previously calculated shear (reaction at right end of the beam. No shear force acts through
the beam just beyond the last vertical force or reaction. If the shear force diagram closes in this
fashion, then it gives an important check on mathematical calculations.

The bending moment diagram is obtained by proceeding continuously along the length of beam
from the left hand end and summing up the areas of shear force diagrams giving due regard to
sign. The process of obtaining the moment diagram from the shear force diagram by summation
is exactly the same as that for drawing shear force diagram from load diagram.

It may also be observed that a constant shear force produces a uniform change in the bending
moment, resulting in straight line in the moment diagram. If no shear force exists along a certain
portion of a beam, then it indicates that there is no change in moment takes place. It may also
further observe that dm/dx= F therefore, from the fundamental theorem of calculus the
maximum or minimum moment occurs where the shear is zero. In order to check the validity
of the bending moment diagram, the terminal conditions for the moment must be satisfied. If
the end is free or pinned, the computed sum must be equal to zero. If the end is built in, the



moment computed by the summation must be equal to the one calculated initially for the
reaction. These conditions must always be satisfied.

Simply supported beam subjected to a central load (i.e. load acting at the mid-way)

W
e £ (4
—%——"%

By symmetry the reactions at the two supports would be W/2 and W/2. now consider any
section X-X from the left end then, the beam is under the action of following forces.

w

W W
/2 A

.So the shear force at any X-section would be = W/2 [Which is constant upto x <1/2]
If we consider another section Y-Y which is beyond 1/2 then

S'FY-Y = ﬂ—w = ﬂ
2 2 for all values greater = 1/2

Hence S.F diagram can be plotted as,

T

7/// Z
V SF.L
%

.For B.M diagram:

If we just take the moments to the left of the cross-section,



B.M = ﬂ xforxliesbetweenO and |2
X-X 2
BM =2 LieBMatx=0
Z!I"'E 2 2
- W
4
Wy |
B.M — X =W k- =
Again
=W ><-‘u"~u’><+M
2
W Wyl
S - Xt —
2 2
W W
BM =T 4+ —
atx -l 2 2

Which when plotted will give a straight relation i.e.

s PN

2

A
W|/4

It may be observed that at the point of application of load there is an abrupt change in the
shear force, at this point the B.M is maximum.

A cantilever beam subjected to U.d.L, draw S.F and B.M diagram.

w / length

| v

|
W,
¥ X

Here the cantilever beam is subjected to a uniformly distributed load whose intensity is given
w / length.

Consider any cross-section XX which is at a distance of x from the free end. If we just take
the resultant of all the forces on the left of the X-section, then

S.Fxx = -Wx for all values of ‘x'. =====mm=== )

S.Fxx=0



S.Fxxatx=1 = -WI

So if we just plot the equation No. (1), then it will give a straight line relation. Bending
Moment at X-X is obtained by treating the load to the left of X-X as a concentrated load of
the same value acting through the centre of gravity.

Therefore, the bending moment at any cross-section X-X is

B.M}{_x - - W){ %

2

X
= - W—
2

The above equation is a quadratic in X, when B.M is plotted against x this will produces a
parabolic variation.

The extreme values of this would be at x =0 and x =1

W2
BMagy=1=-——

2
=% - Wi

Hence S.F and B.M diagram can be plotted as follows:

e - w | length

——— 2

SF .\

\W ]
‘ 4 BM [-WE,

Simply supported beam subjected to a uniformly distributed load [U.D.L].

w/ler)gth

o> iN
wi W
11/2 ; . t'l/z

The total load carried by the span would be



= intensity of loading x length

=wxl

By symmetry the reactions at the end supports are each wl/2

If x 1s the distance of the section considered from the left hand end of the beam.
S.F at any X-section X-X is

=E—W}<

-]

Giving a straight relation, having a slope equal to the rate of loading or intensity
of the loading.

S.Fm,(:n:%] - WX
soat
S.Fm | =0 hencethe S.Fiszeroatthe centre
X= -
7
W
SFay=1=" 5

The bending moment at the section x is found by treating the distributed load as
acting at its centre of gravity, which at a distance of x/2 from the section

X

\,\ﬂ/? \

BMyy, =y - Wx%
sothe

X

=w.§(| -2) ()

BM,,.,=0
BM,,.,=0

Wi
BMgy=y =-—

So the equation (2) when plotted against x gives rise to a parabolic curve and
the shear force and bending moment can be drawn in the following way will
appear as follows:
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B.M.Diagram

5. Couple.

When the beam is subjected to couple, the shear force and Bending moment diagrams may be
drawn exactly in the same fashion as discussed earlier.

]
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Simple Bending Theory OR Theory of Flexure for Initially Straight Beams

(The normal stress due to bending are called flexure stresses)

Preamble:

When a beam having an arbitrary cross section is subjected to a transverse loads the beam
will bend. In addition to bending the other effects such as twisting and buckling may occur,
and to investigate a problem that includes all the combined effects of bending, twisting and
buckling could become a complicated one. Thus we are interested to investigate the bending
effects alone, in order to do so, we have to put certain constraints on the geometry of the
beam and the manner of loading.

Assumptions:

The constraints put on the geometry would form the assumptions:

1. Beam is initially straight , and has a constant cross-section.



2. Beam is made of homogeneous material and the beam has a longitudinal plane of
symmetry.

3. Resultant of the applied loads lies in the plane of symmetry.

4. The geometry of the overall member is such that bending not buckling is the primary cause
of failure.

5. Elastic limit is nowhere exceeded and ‘E' is same in tension and compression.

6. Plane cross - sections remains plane before and after bending.

Netural Surface

S
A
v/

Let us consider a beam initially unstressed as shown in fig 1(a). Now the beam is subjected to
a constant bending moment (i.e. ‘Zero Shearing Force') along its length as would be obtained
by applying equal couples at each end. The beam will bend to the radius R as shown in Fig
1(b)

As a result of this bending, the top fibers of the beam will be subjected to tension and the
bottom to compression it is reasonable to suppose, therefore, that some where between the
two there are points at which the stress is zero. The locus of all such points is known as
neutral axis . The radius of curvature R is then measured to this axis. For symmetrical
sections the N. A. is the axis of symmetry but what ever the section N. A. will always pass
through the centre of the area or centroid.

The above restrictions have been taken so as to eliminate the possibility of 'twisting' of
the beam.

Concept of pure bending:

Loading restrictions:

As we are aware of the fact internal reactions developed on any cross-section of a beam may
consists of a resultant normal force, a resultant shear force and a resultant couple. In order to
ensure that the bending effects alone are investigated, we shall put a constraint on the loading
such that the resultant normal and the resultant shear forces are zero on any cross-section

perpendicular to the longitudinal axis of the member,

That means F =0



@ =F=0
since 4% or M = constant.

Thus, the zero shear force means that the bending moment is constant or the bending is same

at every cross-section of the beam. Such a situation may be visualized or envisaged when the

beam or some portion of the beam, as been loaded only by pure couples at its ends. It must be
recalled that the couples are assumed to be loaded in the plane of symmetry.

-<——RBeam

Plane of Symmetry

Fig (1)

Fig (2)

When a member is loaded in such a fashion it is said to be in pure bending.

Bending Stresses in Beams or Derivation of Elastic Flexural formula :

In order to compute the value of bending stresses developed in a loaded beam, let us consider
the two cross-sections of a beam HE and GF , originally parallel as shown in fig 1(a).when
the beam is to bend it is assumed that these sections remain parallel i.e. H'E' and G'F' , the
final position of the sections, are still straight lines, they then subtend some angle [].

Consider now fiber AB in the material, at adistance y from the N.A, when the beam bends
this will stretch to A'B'

Therefare,
change inlength

strain in fibre AB = .
orginal length

-AB -AB ButAB = CDandCD =C'D'
AB
refer tofigl(a) andfigi(b)
AB'-CD'
cD'

C.ostrain =

Since CD and C'D' are on the neutral axis and it is assumed that the Stress on the neutral axis
zero. Therefore, there won't be any strain on the neutral axis



(R+y)8-RB _RB+yB-RA _ vy
RB RB R
However Zttrrzis: =E  whereE =Young's Modulus of elasticity

Therefore equating the twostrains as
obtained fromthe tworelationsi.e,

A
¥ T N.A
v . -

Consider any arbitrary a cross-section of beam, as shown above now the strain on a fibre at a
distance ‘y' from the N.A, is given by the expression

0=E
ﬁh‘

if the shaded strip is of area'dA’
thenthe force onthe stripis

F=o8A=Cy 6A
R

Moment about the neutral axiswouldbe=F.y = % y26A

The toatl moment for the whole
cross-section istherefore equal to

_<E 2 :a_ Ec.2
M=3_ 6A= — A
ERY RZY

2
Now the term2Y & s the property of the material and is called as a second moment of area
of the cross-section and is denoted by a symbol 1.

Therefore
E
M=l
- @
combining equation 1 and 2 we get
g_M_E
y T R

This equation is known as the Bending Theory Equation. The above proof has involved the
assumption of pure bending without any shear force being present. Therefore this termed as
the pure bending equation. This equation gives distribution of stresses which are normal to
cross-section i.e. in x-direction.



Shearing Stresses in Beams

All the theory which has been discussed earlier, while we discussed the bending stresses in
beams was for the case of pure bending i.e. constant bending moment acts along the entire
length of the beam.

+P

P

Let us consider the beam AB transversely loaded as shown in the figure above. Together with
shear force and bending moment diagrams we note that the middle potion CD of the beam is
free from shear force and that its bending moment. M = P.a is uniform between the portion C
and D. This condition is called the pure bending condition.

Since shear force and bending moment are related to each other F= dM/dX (eq) therefore if the
shear force changes than there will be a change in the bending moment also, and then this won't
be the pure bending.

Conclusions :

Hence one can conclude from the pure bending theory was that the shear force at each X-
section is zero and the normal stresses due to bending are the only ones produced.

In the case of non-uniform bending of a beam where the bending moment varies from one X-

section to another, there is a shearing force on each X-section and shearing stresses are also

induced in the material. The deformation associated with those shearing stresses causes

warping “ of the x-section so that the assumption which we assummed while deriving the
g_M_E

relation ¥ R that the plane cross-section after bending remains plane is violated. Now due
to warping the plane cross=section before bending do not remain plane after bending. This
complicates the problem but more elaborate analysis shows that the normal stresses due to

bending, as calculated from the equation ¥



The above equation gives the distribution of stresses which are normal to the cross-section that
is in x-direction or along the span of the beam are not greatly altered by the presence of these
shearing stresses. Thus, it is justifiable to use the theory of pure bending in the case of non
uniform bending and it is accepted practice to do so.

Let us study the shear stresses in the beams.

Concept of Shear Stresses in Beams :

By the earlier discussion we have seen that the bending moment represents the resultant of
certain linear distribution of normal stresses [1x over the cross-section. Similarly, the shear

force Fx over any cross-section must be the resultant of a certain distribution of shear stresses.

Derivation of equation for shearing stress :

Resultant stresses {this side is more as

compared to the other side) |

. f_/g

This is lhe small —
element over which
the stresses acts

\ " Ft bF
M
M+5M Z = width of the
2

EY

X- section

section

section 1 S
ec Resisting shear stress.

Assumptions :
1. Stress is uniform across the width (i.e. parallel to the neutral axis)
2. The presence of the shear stress does not affect the distribution of normal bending stresses.

It may be noted that the assumption no.2 cannot be rigidly true as the existence of shear stress
will cause a distortion of transverse planes, which will no longer remain plane.

In the above figure let us consider the two transverse sections which are at a
distance ¢ 0x' apart. The shearing forces and bending moments being F, F + 6F and M, M
+ 0M respectively. Now due to the shear stress on transverse planes there will be a
complementary shear stress on longitudinal planes parallel to the neutral axis.

Let T be the value of the complementary shear stress (and hence the transverse shear stress) at
a distance “Y'o from the neutral axis. Z is the width of the x-section at this position

A is area of cross-section cut-off by a line parallel to the neutral axis.

¥ = distance of the centroid of Area from the neutral axis.



Let 6, 6+ do are the normal stresses on an element of area 6A at the two transverse sections,
then there is a difference of longitudinal forces equal to ( do . dA) , and this quantity summed
over the area A is in equilibrium with the transverse shear stress [J on the longitudinal plane of
area z 0X .

e 1.zox= Ido.dA
from the bending theory equation

g-M
y
on[.y
o+do‘(M * l‘o‘M) Y
o,y

The figure shown below indicates the pictorial representation of the part.

{(o=do)dA

{Pictorial representation
of entire part)

do = &MLy
|
1.26% = Ida.dA
_ J‘ SM .y 6A

I
1.26% = SI—M Iy.GA

G
3

Ie. T= ify.BA
l.z
But from defintion, | y.dA =AY

Iy.dA is the first moment of area of the shaded portion

and y = centroid of the area'A’
Hence

So substituting l.z



Where ‘7' is the actual width of the section at the position where ‘0t ' is being calculated and I
is the total moment of inertia about the neutral axis.

Bending of Composite or Flitched Beams:

A composite beam is defined as the one which is constructed from a combination of materials.
If such a beam is formed by rigidly bolting together two timber joists and a reinforcing steel
plate, then it is termed as a flitched beam.

The bending theory is valid when a constant value of Young's modulus applies across a section
it cannot be used directly to solve the composite-beam problems where two different materials,
and therefore different values of E, exists. The method of solution in such a case is to replace
one of the materials by an equivalent section of the other.

Steel steed 1s replaced
by an equivalent

l/ me:«ofwo(\xl
7T 1 __idy \ 4

/ Ay a ¥

/1

wood

:,l{'li,_ - t' %

Composite Section Equivalent Section

Consider, a beam as shown in figure in which a steel plate is held centrally in an appropriate
recess/pocket between two blocks of wood .Here it is convenient to replace the steel by an
equivalent area of wood, retaining the same bending strength. i.e. the moment at any section
must be the same in the equivalent section as in the original section so that the force at any
given dy in the equivalent beam must be equal to that at the strip it replaces.

ot =o't or i.=t—
gt

recallingo = E.z

Thus
sEt=c E t
Again, for true similarity the strains must be equal,
£=: otEt=E t or _E,=t_
E t

Thus, |t = E
E

Hence to replace a steel strip by an equivalent wooden strip the thickness must be multiplied
by the modular ratio E/E'.

The equivalent section is then one of the same materials throughout and the simple bending
theory applies. The stress in the wooden part of the original beam is found directly and that in
the steel found from the value at the same point in the equivalent material as follows by utilizing
the given relations.



Stress in steel = modular ratio x stress in equivalent wood

The above procedure of course is not limited to the two materials treated above but applies well
for any material combination. The wood and steel flitched beam was nearly chosen as a just
for the sake of convenience.

Assumption

In order to analyze the behavior of composite beams, we first make the assumption that the
materials are bonded rigidly together so that there can be no relative axial movement between
them. This means that all the assumptions, which were valid for homogenous beams are valid
except the one assumption that is no longer valid is that the Young's Modulus is the same
throughout the beam.

The composite beams need not be made up of horizontal layers of materials as in the earlier
example. For instance, a beam might have stiffening plates as shown in the figure below.

s X X ></><><><
XX XX

Concrete, E:

Again, the equivalent beam of the main beam material can be formed by scaling the breadth of
the plate material in proportion to modular ratio. Bearing in mind that the strain at any level is
same in both materials, the bending stresses in them are in proportion to the Young's modulus.

bt |
[

E1

R

L |

A
Y

bi+2b2E2/E1



A cantilever 6m long carries load of 30, 70, 40 and 60KN at a distance of 0, 0.6, 1.5 and 2.4m
respectively from the free end. Draw the shear force and bending moment diagrams for the
cantilever beam

Solution: d 60kN 40kN 70 er >30 kN
SF calculation: r
A B |Ic D |E
SFatE = 30kN 06 m
4 1.5m i
SFatD = 30+ 70 24m i
6m
= 100 kN 200kN | (@)
SFatC = 100+ 40 ;) o
1 100kN
= +ve 1.
140 kN ’ 130k
SF at B = 140 + 60 2L Yooz e e/
A B [c o |E-
= 200 kN (b)
- A B |c Ib [E
S'F at A 200 kN < - y -~
Join all the values by _— »9,;?08 ien ’

straight horizontal line as

234 kN-m
shown in Fig. (b).
BM calculation: 3 (c) BMD
BMatE = 0 | }
BMatD = -30x0.6 = — 18 kN-m
BMatC = -30x1.5-70%x 0.9 = —~ 108 kN-m
BMatB = —-30x24-70x1.8-40x0.9= —234 kN-m
BMatA = —-30x6-70%x54-40x4.5-60x3.6
= —954 kN-m
Join all the values by straight inclined lines as shown in

Fig.(¢).
Result: The SFD and BMD are as shown in
Fig (b) & (c) respectively.

In this there is an abrupt change of loading beyond a certain point thus, we shall have to be
careful at the jumps and the discontinuities.

6000N
400N/m ,

I Y Y YYYY

=

8m P 8m

R1

For the given problem, the values of reactions can be determined as

R2 =3800N and R1 = 5400N



The shear force and bending moment diagrams can be drawn by considering the X-sections at
the suitable locations.

5400N \

3800N SF.D

2200N

2™ degree
polynomial |
since there is
audl in this
portion.

A simply supported beam of rectangular cross section 60 x 35 mm and 3m long carrying a load
of SKN at mid span. Determine the maximum bending stress induced in the beam.

Given:
. SkN
Simply supported beam,
Breadth, » = 60 mm A B
Height, # = 35 mm 1.5m
Length,/ = 3m 3m
Load, W = 5kN A

To find: Maximum bending stress, o, .

© Solution:

Bending moment, M at centre:

Taking moment about A,
Rex3m = 5x1.5

(]
Re = 37 = 25m

R,+Rc = SKN
R, = 5-25=25kN

Taking moment about B,
M = R-x15
2:59%15
3.75 kKN-m
3.75 x 10 N-mm

Moment of inertia
for rectangular ¢ [ =
section,

bk 60 x 35
12 = 12

214375 mm*



UNIT-V

DEFLECTION OF BEAMS

Deflection of Beams
Introduction:

In all practical engineering applications, when we use the different components, normally we
have to operate them within the certain limits i.e. the constraints are placed on the performance
and behavior of the components. For instance we say that the particular component is supposed
to operate within this value of stress and the deflection of the component should not exceed
beyond a particular value.

In some problems the maximum stress however, may not be a strict or severe condition but
there may be the deflection which is the more rigid condition under operation. It is obvious
therefore to study the methods by which we can predict the deflection of members under lateral
loads or transverse loads, since it is this form of loading which will generally produce the
greatest deflection of beams.

Assumption: The following assumptions are undertaken in order to derive a differential
equation of elastic curve for the loaded beam

1. Stress is proportional to strain i.e. hooks law applies. Thus, the equation is valid only for
beams that are not stressed beyond the elastic limit.

2. The curvature is always small.

3. Any deflection resulting from the shear deformation of the material or shear stresses is
neglected.

It can be shown that the deflections due to shear deformations are usually small and hence can
be ignored.

AY

Al B

—’I dxl<— ):

Consider a beam AB which is initially straight and horizontal when unloaded. If under the
action of loads the beam deflect to a position A'B' under load or infact we say that the axis of
the beam bends to a shape A'B'. It is customary to call A'B' the curved axis of the beam as the
elastic line or deflection curve.

In the case of a beam bent by transverse loads acting in a plane of symmetry, the bending
moment M varies along the length of the beam and we represent the variation of bending
moment in B.M diagram. Futher, it is assumed that the simple bending theory equation holds
good.
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If we look at the elastic line or the deflection curve, this is obvious that the curvature at every
point is different; hence the slope is different at different points.

To express the deflected shape of the beam in rectangular co-ordinates let us take two axes x
and y, x-axis coincide with the original straight axis of the beam and the y — axis shows the
deflection.

Futher,let us consider an element ds of the deflected beam. At the ends of this element let us

construct the normal which intersect at point O denoting the angle between these two normal
be di

But for the deflected shape of the beam the slope i at any point C is defined,

tani=d—y (1) 0r i=?ﬂxssumingtani=i
X

dx
Futher

ds =Rdi
however,
ds = dx [usually for smallcury ature]

Hence

ds = dx = Rdi

e
d¥x R

substitutingthevalueofi, one get
d[dy]_ 1 dfy 1

oH) RU e R
Fromthe simplebendingtheory
M_E _El
T R"MR
sothe basic differentialequation governingthe deflectionof beamsis
d?y
M=El
ra

This is the differential equation of the elastic line for a beam subjected to bending in the plane
of symmetry. Its solution y = f(x) defines the shape of the elastic line or the deflection curve as
it is frequently called.

Relationship between shear force, bending moment and deflection: The relationship
among shear force,bending moment and deflection of the beam may be obtained as

Differentiating the equation as derived

dM_, dy _dM
—___=El Recalling —=F
dx d gdx
Thus,

d3y
F=El

dx

Therefore, the above expression represents the shear force whereas rate of intensity of loading
can also be found out by differentiating the expression for shear force



lew= - 3
' dx
dty

w= -El
dx*

Therefare if'y'isthe deflection of the loadedbeam,
thenthefollowingimportantrelationscanbearrivedat

dy
lope =122
slope ==
d*y
BM=El
dx?
&y
Shearforce = El
&
P
loaddistribution =E|3_§jr
X

Methods for finding the deflection: The deflection of the loaded beam can be obtained
various methods. The one of the method for finding the deflection of the beam is the direct
integration method, i.e. the method using the differential equation which we have derived.

Direct integration method: The governing differential equation is defined as

dty M _ dy
M = El =
TG "B dx

onintegrating one get,
d

&= Iﬂdx +A----thisequation gives the slope
dx El

of theloadedbeam.
Integrate once again to get the deflection.

y=”g1de+Ax+B

Where A and B are constants of integration to be evaluated from the known conditions of slope
and deflections for the particular value of x.

Ilustrative examples : let us consider few illustrative examples to have a familiarty with the
direct integration method

Case 1: Cantilever Beam with Concentrated [Load at the end:- A cantilever beam is subjected
to a concentrated load W at the free end, it is required to determine the deflection of the beam

W |X

v

In order to solve this problem, consider any X-section X-X located at a distance x from the left
end or the reference, and write down the expressions for the shear force abd the bending
moment



SF),_, = -W

X=X
BM|,_, = -W.x
Therefore M| _, = -W.x
2

. . dy
h b
thegoverning equation ST

substituting the value of M interms of x then integrating the equation one get

M _ dy
Bl df
d’y __ W
d&f  E
2
IH: —%d}{
dx? El
dy _ Wl
A== 4
TR

Integrating once more,
dy Wy
=) -—dx+) Ad
Iw Iza [

3
y = Rl +Ax+B
6EI

The constants A and B are required to be found out by utilizing the boundary conditions as
defined below

ieatx=L;y=0 (1)

atx=L;dy/dx=0 (2)

Utilizing the second condition, the value of constant A is obtained as

_WE
T 2B
While employing the first condition yields
Wi
y=- BET +AL+B
g WL
BEI
_wlE owl®
" BEl 2Bl
Wl -awl _ awl®
G ~ TBEI
_owld
3E

Substituting the values of A andB we get
[ owed wiix wiB
Y=g |eEr e 3
The slope aswell as the deflection would be
maximum at the free end hence putting x=0 we get,

_wE
Ymax = ~ ﬁ

2
-, wr
[Slope]maxm _+E




Case 2: A Cantilever with Uniformly distributed Loads:- In this case the cantilever beam is
subjected to U.D.L with rate of intensity varying w / length. The same procedure can also be

adopted in this case

|X
| \
x=0 |e 2 ' R\ x=L
X
i\
SFl,_, =-w
X ¥
BM|,_, = -w.x 5= W[T]
M _ dly
Bl &Z
dzyz_wx
dxZ  2El
dty wi
=J- d
IW / 2El
dyz_wx3 N
dix  BEl
dy _ _wx3
I_x ﬁd><+‘[»‘-'«d>{
___wx“ +Ax+B
Y=

Boundary conditions relevant to the problem are as follows:

I.LAtx=L;y=0
2. Atx=L; dy/dx=0

The second boundary conditions yields

Wi
/ﬂ\—+ﬁ
whereasthe firstboundary conditions yields
_owltwl?
24El BEI
_owl?
BEI

4 3 4
Thus, Y=1 WX +wLx_wLI

Ell 24 B g
S0 Ymaxm willbe at x =0

wl?
BEl

¥maxm= ~

dyJ =WL3
dx ) 2m  GEI




Case 3: Simply Supported beam with uniformly distributed Loads:- In this case a simply
supported beam is subjected to a uniformly distributed load whose rate of intensity varies as w
/ length.

- g
Wi
2

In order to write down the expression for bending moment consider any cross-section at
distance of x metre from left end support.

. 1&1
X 2

NI:‘_

e
BMIXX‘W[ ] [ ]

_wlx w?
2 7
The differential equation which gives the elastic curve for the deflected beam is
d'y _ M _ [wl X wxz]
T E

&f Bl 2 2
dy wlx W

=[5 Iza dxr &

_ whe wx®
4EI  BEI

Integrating,once more one gets

whe vt

=___-____+Ax+B = ----- 1
281 2481 " M

Boundary conditions which are relevant in this case are that the deflection at each support must
be zero.

lLe.atx=0;y=0:atx=1y=0

let us apply these two boundary conditions on equation (1) because the boundary conditions
are on y, This yields B = 0.



4 4

_owlh_wl
12El 24El
wl
24El
Sothe equation which gives the deflection curve is
1 fwl® e wlx
CTE|T1Z 28 24

Futher

In this case the maximum deflection will occur at the centre of the beam where x =L/2 [ i.e. at
the position where the load is being applied ].So if we substitute the value of x = L/2

e e w5 5

St
354El

Y m ="

max

Conclusions
(1) The value of the slope at the position where the deflection is maximum would be zero.
(i1) The value of maximum deflection would be at the centre i.e. at x = L/2.

The final equation which is governs the deflection of the loaded beam in this case is

1 [wh® _wed_wlPx
EIl 12 24 24

By successive differentiation one can find the relations for slope, bending moment, shear force
and rate of loading.

Deflection (y)

-SWLY

" 384El

yEl = wl®  wae? wlx
12 24 24

L

Slope (dy/dx) /—‘ o
24

Wi

El.d_y= 3wbd 4w wl® 4
dx 12 24 24 .

3" degree Polynomial

Bending Moment

d2y= 1 wLx_wx2
of B2 T2

So the bending moment diagram would be
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Single degre® shear force
equation In ¥’

Shear Force

Shear force is obtained by
taking

third derivative.

d*y _wl
El = -wW.X
de 2

Rate of intensity of loading

d*y _

= -y
dx°

El

Case 4: The direct integration method may become more involved if the expression for entire
beam is not valid for the entire beam.Let us consider a deflection of a simply supported beam
which is subjected to a concentrated load W acting at a distance 'a' from the left end.

Let R; & R» be the reactions then,

R IRz



B.M for the portion AB

Myp=FRix0<x<a

B.M for the portionBC

Mo =Rix-W(x-a)a<x<l

so the differential equation for the two caseswould be,

2
EIS?;= R, x

d2
Elaf;=F?1x-VM(x-a)

These two equations can be integrated in the usual way to find ‘y' but this will result in four
constants of integration two for each equation. To evaluate the four constants of integration,
four independent boundary conditions will be needed since the deflection of each support must
be zero, hence the boundary conditions (a) and (b) can be realized.

Further, since the deflection curve is smooth, the deflection equations for the same slope and
deflection at the point of application of load i.e. at x = a. Therefore four conditions required to
evaluate these constants may be defined as follows:

(a) at x =0; y =0 in the portion ABie.0<x<a

(b) at x =1; y =0 in the portion BCi.e.a<x <1

(c) at x = a; dy/dx, the slope is same for both portion

(d) at x = a; y, the deflection is same for both portion

By symmetry, the reaction R is obtained as

RI—Wb
atb
Hence,
dy _ Wh
|—-= {REP =omenen- 1
EW p X 0<x<a (1
d*y _ Wb
—2 = - - 0 B4 P
Eldx2 (a+b)x Wk - a) asu<l (2)
integrating (1) and (2) we get,
dy _ Wb
= 0L %EH ~~=~mmmn
& 2a+py x<a @)
2
dy _ Wb o W(x-a)
El—== - k {xLlammmnnn- 4
dx  2(a +b) i T )

Using condition (c) in equation (3) and (4) shows that these constants should be equal, hence
letting

Ki=Kr,=K

Hence



dy _ Wb
El-L= +k OD<xca------ 3
dx 2(a+b) e )
2
dy _ Wb, W(x-a)
El—== . +k Cx&lammmnns 4
dx 2(a+b) 7 asx @
Integrating agian equation (3) and (4) we get
= ¥ {X€Q-mnmn--
Ely B(a+b)x +kit +ksy D<x<a &)
3
Ely = W }{3-W(x a) +h +ky, asnsl--an-- (B)
B(a+b) B
Utilizing condition (a) in equation (5) yields

Utilizing condition (b) in equation (B) yields
Wh o, W(-a)

0= [ - +kl +k
Bla +b) B 4
Wb, W(l-a)®
k,=- [+ -kl
4 B(a+h) B
Buta+b=I,
Thus,

Whia +b)’ | Wt

kg =-
* B B

- k{a+b)

Now lastly k3 is found out using condition (d) in equation (5) and equation (6), the condition
(d) is that,

At x = a; y; the deflection is the same for both portion

Therefare yl'mmequaﬁon5 = Yl,mmequaﬁons

ar
3
Wb 3 Wh 3 W(x-a)
+kx +ka = - +kx +k
Ba+b) 3T Bla+h) 3 s
3
Wb, Wb, W(a-a)
—_a +ka+k; = = +ka +k
Bla+b) . T Eaen) 3 i
Thus, ks=0;
OR
2 3
k4=_Wb(a+b) $ 0 -k(a+b)=0
B B
Wh(a+b)* i
k(a+b)=- +
= Wh(atb) Wh?

B B{a +b)



so the deflection equations for each portion of the beam are

Wh o 5
Ely= ¥ ko +k
= o) 3
W Whia+b)x Wb
= - + ----for0<x<a----- 7
5(a+b) 3 5(a +b) orb<xsa-----(7)
and for other portion
3
WWh 3 W(x-a)
Ely= - +kx +k
B 3 e
Substituting the value of 'k'in the above equation
3 -3 3
~ Wh  W(x-a) Wbla+b)x Wh'x Forfora$x<l----- (8)

B(a+b) B B B(a+b)
so either of the equation (7) or 8)may be used to find the deflection at x=a
hence substituting x = a in either of the equation we get

Yl =- Wa'b?
2 3El{a+b)
ORifa=b=12
__woi
max™ _ 4GEI

ALTERNATE METHOD: There is also an alternative way to attempt this problem in a more
simpler way. Let us considering the origin at the point of application of the load,

X
('/2"‘ |! x W

L
e ‘/2 x=0 o
\V/2 W/2
I
X
WY
SF|, = 5
_ Wil
substituting the value of Min the governing equation for the deflection
Wil .
dly _2\2
i El
2
dy _ 1 Wl | W +A
¥ EIl 4 4
2 2
y= l _WLX = _W}( +Ax +B
EI| 8 12

Boundary conditions relevant for this case are as follows
(1) atx =0; dy/dx=0
hence, A=0

(i1) at x = 1/2; y = 0 (because now 1/ 2 is on the left end or right end support since we have
taken the origin at the centre)



Thus,
W il
=+
d [ 32 96 B]
W
43
Hence he equation which governsthe deflectionwouldbe
1 [WL}{2 CWHE WL3]

12 48
Hence
_owe
max |at>< o - 48E| At the centre
L Wi
[ ]m atets = ﬁ Atthe ends

Hence the integration method may be bit cumbersome in some of the case. Another limitation
of the method would be that if the beam is of non uniform cross section,

i.e. it is having different cross-section then this method also fails.
So there are other methods by which we find the deflection like

1. Macaulay's method in which we can write the different equation for bending moment for
different sections.

2. Area moment methods

3. Energy principle methods

THE AREA-MOMENT / MOMENT-AREA METHODS:

The area moment method is a semi graphical method of dealing with problems of deflection of
beams subjected to bending. The method is based on a geometrical interpretation of definite
integrals. This is applied to cases where the equation for bending moment to be written is

cumbersome and the loading is relatively simple.

Let us recall the figure, which we referred while deriving the differential equation governing
the beams.

o =)




It may be noted that dx is an angle subtended by an arc element ds and M is the bending moment
to which this element is subjected.

We can assume,
ds = dx [since the curvature is small]

hence, R d[] =ds

d6 _ 1 _M
ds R El
df _ M
ds El

But for small curvature[but Bisthe angle slope is tan8=¥ for small
X

2

anglestanB = Bhence & = d—yso we g|etd—Y = Mby putting ds = dx]
dx dx?  El

Hence,

dé _M _Mdx|

d—x—aor d@——EI (1)

The relationship as described in equation (1) can be given a very simple graphical interpretation
with reference to the elastic plane of the beam and its bending moment diagram

"
Defibaio _:u,.,qr' tangents drawn at the
A ! end of small element ds,
Defection curve of Q{& B
the beam . Arc = Angle x radius
we can lake the radius
-~ to be equal 1o X
/ This Isalso within
Al g reasonable sccuracy

— X f———— ¥ —

s |

+C

Sy

Bending Moment dlagram
of the beam subjected to —s| M<
arbitrary type of loading

NN
N

N

N

A '-Q—’)T —{ B
cantroid

Refer to the figure shown above consider AB to be any portion of the elastic line of the loaded
beam and A;B4is its corresponding bending moment diagram.

Let AO = Tangent drawn at A
BO = Tangent drawn at B
Tangents at A and B intersects at the point O.
Futher, AA 'is the deflection of A away from the tangent at B while the vertical distance B'B

is the deflection of point B away from the tangent at A. All these quantities are futher
understood to be very small.



Let ds = dx be any element of the elastic line at a distance x from B and an angle
between at its tangents be d[1. Then, as derived earlier

de=——=
El

This relationship may be interpreted as that this angle is nothing but the area M.dx of the shaded
bending moment diagram divided by EIL

From the above relationship the total angle [ between the tangents A and B may be determined
as

Since this integral represents the total area of the bending moment diagram, hence we may
conclude this result in the following theorem

Theorem I:
{ slopeorB } _ %x area of B.M diagrambetween
PGty S St Ayt poinits corresponding portion of B.M diagram

Now let us consider the deflection of point B relative to tangent at A, this is nothing
but the vertical distance BB'. It may be note from the bending diagram that bending of the
element ds contributes to this deflection by an amount equal to x d[][J[each of this intercept
may be considered as the arc of a circle of radius x subtended by the angle [1]

B
6=I xdB
Hence the total distance B'B becomes 4

The limits from A to B have been taken because A and B are the two points on the elastic curve,
under consideration]. Let us substitute the value of d[1 = M dx / EI as derived earlier

Mdx _ & Mdx
X

6= =|—.
El

}{ —

Y@

A [ This is infact the moment of area of the bending moment diagram]

Since M dx is the area of the shaded strip of the bending moment diagram and x is its
distance from B, we therefore conclude that right hand side of the above equation represents
first moment area with respect to B of the total bending moment area between A and B divided
by EL

Therefore,we are in a position to state the above conclusion in the form of theorem as follows:

Theorem 11:

1 y first moment of area with respect
El topointB, of the total B.M diagram

Deflection of point ‘B’ relative to point A

Futher, the first moment of area, according to the definition of centroid may be written as A
, where ¥ is equal to distance of centroid and a is the total area of bending moment



m|—=

Thus,

Therefore, the first moment of area may be obtained simply as a product of the total area of the
B.M diagram between the points A and B multiplied by the distance ¥ to its centroid C.

If there exists an inflection point or point of contreflexure for the elastic line of the loaded beam
between the points A and B, as shown below,

|
|
1
)
|
|
D

Then, adequate precaution must be exercised in using the above theorem. In such a case B. M
diagram gets divide into two portions +ve and —ve portions with centroids Ciand C. Then to
find an angle [ between the tangent sat the points A and B

D B
o= Ide de
» Bl
And similarly for the deflection of Baway fromthe tangent at Abecomes

Ide de Mdx

A

6=

Ilustrative Examples: Let us study few illustrative examples, pertaining to the use of these
theorems

Example 1:

1. A cantilever is subjected to a concentrated load at the free end.It is required to find out the
deflection at the free end.

Fpr a cantilever beam, the bending moment diagram may be drawn as shown below

w
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Let us workout this problem from the zero slope condition and apply the first area - moment
theorem

slope at A=%[Area of B.M diagrambetween the points A and B]

_11

o] [2L WL]
_ Wit

2El

The deflection at A (relative to B) may be obtained by applying the second area - moment
theorem

NOTE: In this case the point B is at zero slope.

Thus,

6= % [first moment of area of B. Mdiagram between A andBabout A

= S (A7)

1 [f 1 2
==ll5 WL |2
s

3EI

Example 2: Simply supported beam is subjected to a concentrated load at the mid span
determine the value of deflection.

A simply supported beam is subjected to a concentrated load W at point C. The bending
moment diagram is drawn below the loaded beam.

N B.M digram.
o gL, ot e
L
Again working relative to the zero slope at the centre C.
slope at A= l[»‘krea of B.M diagrambetween A and C]
WL .
EI we are taking half area of the B.Mbecause we

have towork out thisrelative to a zero slope

£

o
m



Deflection of A relative to C = central deflection of C
or

6o= %[Mo ment of B.Mdiagram between points Aand C about A

LG8

_wi®
4BEI

Example 3: A simply supported beam is subjected to a uniformly distributed load, with a
intensity of loading W / length. It is required to determine the deflection.

The bending moment diagram is drawn, below the loaded beam, the value of maximum B.M
is equal to WI?/ 8

YA length

A c (P S.F.Diagram
| \in
| 2
2
3

B.M.Diagram

Lz

-‘——.J

lo_Si8{L2) |

So by area moment method,

Slope at point Cw.r.t point A = é[Area of B.Mdiagram between point Aand C]

B )

_ 1

El

_we

24El
Deflection atpoint C =%[A 7]
relative to A
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Macaulay's Methods

If the loading conditions change along the span of beam, there is corresponding change
in moment equation. This requires that a separate moment equation be written between each
change of load point and that two integration be made for each such moment equation.
Evaluation of the constants introduced by each integration can become very involved.



Fortunately, these complications can be avoided by writing single moment equation in such a
way that it becomes continuous for entire length of the beam in spite of the discontinuity of
loading.

Note : In Macaulay's method some author's take the help of unit function approximation (i.e.
Laplace transform) in order to illustrate this method, however both are essentially the same.

For example consider the beam shown in fig below:
Let us write the general moment equation using the definition M = ( ), M )L, Which means that
we consider the effects of loads lying on the left of an exploratory section. The moment

equations for the portions AB,BC and CD are written as follows

| x

500N . 450 Nim
A 31 Y vy ¥ v 40
- ! o Maug = 480 xN.m
2m A D) (o) ]| 2m -
Ri=480N S Ra=920N My = [480 x-500(x-2)]N.m
; | Mg = [480x—500(x—2)-%(x-3)2]l‘~1.m

It may be observed that the equation for Mcp will also be valid for both Mag and Mgc provided
that the terms (x - 2) and ( x - 3 )%are neglected for values of x less than 2 m and 3 m,
respectively. In other words, the terms ( x - 2 ) and ( x - 3 )? are nonexistent for values of x for
which the terms in parentheses are negative.

Y|
: 50‘0N 450 N/fm
A B CY YYY ¥ YD
! —
" 2m _L.. Tl Zm
R1=480 N R:=920 N

As an clear indication of these restrictions, one may use a nomenclature in which the usual
form of parentheses is replaced by pointed brackets, namely, < ». With this change
in nomenclature, we obtain a single moment equation

M= [4anx-5nn(x-2) - @(x —3)2]N.m

Which is valid for the entire beam if we postulate that the terms between the pointed brackets
do not exists for negative values; otherwise the term is to be treated like any ordinary
expression.

As an another example, consider the beam as shown in the fig below. Here the distributed load
extends only over the segment BC. We can create continuity, however, by assuming that the
distributed load extends beyond C and adding an equal upward-distributed load to cancel its



effect beyond C, as shown in the adjacent fig below. The general moment equation, written for
the last segment DE in the new nomenclature may be written as:

o0 N/ 600N
A Bll Irjlc D E
Y r
im { 3m | 2m | 2m
Ri=500N R:=1300N
(a) 600 N
400 Nim
| S BN O R I | T
A AR e
| iR
P P T | I |
m 3m 2m T 2m
Ri=500N
R:=1300N

400

400

M=[5D0x- [x—ﬂz+———(x—4f*4300(x—8ﬂNJﬂ

It may be noted that in this equation effect of load 600 N won't appear since it is just at the last
end of the beam so if we assume the exploratary just at section at just the point of application
of 600 N than x = 0 or else we will here take the X - section beyond 600 N which is invalid.

Procedure to solve the problems

(1). After writing down the moment equation which is valid for all values of ‘x' i.e. containing
pointed brackets, integrate the moment equation like an ordinary equation.

(i1). While applying the B.C's keep in mind the necessary changes to be made regarding the
pointed brackets.

llustrative Examples :
1. A concentrated load of 300 N is applied to the simply supported beam as shown in Fig.

Determine the equations of the elastic curve between each change of load point and the
maximum deflection in the beam.

300 N
A 2m B im c
K=~ < J Y =
e X >
Ri{=100N R;=200N

Solution : writing the general moment equation for the last portion BC of the loaded beam,



d?y
El— =M= (100x - 300{x - 2))N.m )

dx
Integrating twice the above equation to obtain slope and the deflection
EI% = (805 =150 (-2 + C Mt @)

Ely :[53_0;(3 -5[]{;{-2}3 +C1>{+(32]N.m3 e (3)

To evaluate the two constants of integration. Let us apply the following boundary
conditions:

1. At point A where x = 0, the value of deflection y = 0. Substituting these values in
Eq. (3) we find C2 = 0.keep in mind that < x -2 >3 is to be neglected for negative values.

2. At the other support where x = 3m, the value of deflection y is also zero.

substituting these values in the deflection Eq. (3), we obtain
0= [530 3 -50(3-2)° +3.C, ]or C,=-133N.m?

Having determined the constants of integration, let us make use of Egs. (2) and (3) to
rewrite the slope and deflection equations in the conventional form for the two portions.

segment AB (0 € x<£2m)

d}f

Bl = [50x" - 133 )Nm? R))

Ely = [ i -133}{] ....... (5)
segment BC (2m < x £3m)
dy _ 2 2
El— = [50x* -180 (x - 2)° - 133x]Nm” ... (B)

50 5

Ely = -50(x-2)° -133x]N.m3 e

Continuing the solution, we assume that the maximum deflection will occur in the segment
AB. Its location may be found by differentiating Eq. (5) with respect to x and setting the
derivative to be equal to zero, or, what amounts to the same thing, setting the slope equation
(4) equal to zero and solving for the point of zero slope.

We obtain

50 x>~ 133 = 0 or x = 1.63 m (It may be kept in mind that if the solution of the equation does
not yield a value < 2 m then we have to try the other equations which are valid for segment
BC)

Since this value of x is valid for segment AB, our assumption that the maximum deflection
occurs in this region is correct. Hence, to determine the maximum deflection, we substitute x

=1.63 m in Eq (5), which yields

Ely |pgxm = ~145Nm*  __(8)



The negative value obtained indicates that the deflection y is downward from the x axis.quite

usually only the magnitude of the deflection, without regard to sign, is desired; this is denoted

by [J, the use of y may be reserved to indicate a directed value of deflection.
ifE=30Gpaand I=1.9x 10° mm*=1.9x 10 *m*, Eq. (h) becomes

¥|max™ = (30%10%){1.9x107°)
Then =-254mm

Example 2:

It is required to determine the value of Ely at the position midway between the supports and at
the overhanging end for the beam shown in figure below.

R: = 500N Rz=1300N

Solution:

Writing down the moment equation which is valid for the entire span of the beam and applying
the differential equation of the elastic curve, and integrating it twice, we obtain

400

B x-1yt+

EIS—Y =[250x2 220(x 1) 220[x-4)3+650(x-6)2+C1]N.m

400

2
SEEVE [500}{- —=(x-4)’ +1300[x-6)]N.m

(20,550
3 3

(=0 e P x-a)"

+ 0 (x-5)° + Cyxs CZ]N‘m3

To determine the value of C», It may be noted that Ely = 0 at x = 0,which gives C, =
0.Note that the negative terms in the pointed brackets are to be ignored Next,let us use the
condition that Ely = 0 at the right support where x = 6m.This gives

250 50
0= B)° -
3 = © 3

=5y +5?D(2)4+BC1 or C, = -1308Nm?
Finally, to obtain the midspan deflection, let us substitute the value of x = 3m in the

deflection equation for the segment BC obtained by ignoring negative values of the bracketed
terms [J x - 4 [J*and [J x - 6 [J°. We obtain

Ely -@(3) - (2) -1308(3) = -1941 N.m?

For the overhanglng end where =8 m we have
250 .3 50 5.4 50, .4 B50 .3

= -1814Nm*



Example 3:

A simply supported beam carries the triangularly distributed load as shown in figure.
Determine the deflection equation and the value of the maximum deflection.

1Zx=w
Z2 L
we
—nZ
P
¥ o
W
’ |
A C X -——
N~ ¥ =" T {
Do s ks >
Z ol 2 =}
- ‘ — =
Riy=w:i/4 R=w.lL4 w-L/4 '_/2
(a) (b)
Solution:

Due to symmetry, the reactions is one half the total load of 1/2woL, or Ri1 = R, = 1/4woL.Due
to the advantage of symmetry to the deflection curve from A to B is the mirror image of that
from C to B. The condition of zero deflection at A and of zero slope at B do not require the use
of a general moment equation. Only the moment equation for segment AB is needed, and this
may be easily written with the aid of figure(b).

Taking into account the differential equation of the elastic curve for the segment AB and
integrating twice, one can obtain

%

El—L = =_0" = ..

P g L 3 Y
dy wolx? _ wox?

Bl = - SLe sy @
wol®  wox®

Ely L <)

In order to evaluate the constants of integration,let us apply the B.C'swe note that at the support
A, y=0at x =0.Hence from equation (3), we get C> = 0. Also,because of symmetry, the slope
dy/dx = 0 at midspan where x = L./2.Substituting these conditions in equation (2) we get

D:W_DL EZ—W_D E4+CC :-5W’0L3
g |2) 12012 =1 192

Hence the deflection equation from A to B (and also from C to B because of symmetry)
becomes

EIY - W[]L}{g _ W0X5 _ SWDLG}{
24 BOL 192

Whichreducesto

Ely = - Wy X

960L

The maximum deflection at midspan where x=L/2 isthen found to be

(%U-mﬁﬁ+mﬁ]

B W0L4
120

Ely =




Example 4: couple acting

Consider a simply supported beam which is subjected to a couple M at a distance 'a' from the
left end. It is required to determine using the Macauley's method.

l’{; =M
A L

| la 1

R = ";"1 ‘;4—’3—>L ”;: o
T >
e
Al r ) 1B
< 2 - b @
< L o

Therefore, writing the general moment equation we get

dy
M=Ryx -M{x-a) or El— = M

dx
Integrating twice we get

dy _ o ¥ 1
Elﬁ = R,.?— M{x-a} +C,

3
Ely = R"%_%O{ -a¥ + Cyx+ C,



Columns

INTRODUCTION:

Column or strut is defined as a member of a structure, which is subjected to axial compressive
load. If the member of the structure is vertical and both of its ends are fixed rigidly while
subjected to axial compressive load, the member is known as column, for example a vertical
pillar between the roof and floor. If the member of the structure is not vertical and one or both of
its ends are hinged or pin joined, the bar is known as strut i.e. connecting rods, piston rods etc.

FAILURE OF A COLUMN:
The failure of a column takes place due to the anyone of the following stresses set up in the
columns:

a) Direct compressive stresses.

b) Buckling stresses.

c) Combined of direct compressive and buckling stresses.

Failure of a Short Column:
A short column of uniform cross-sectional area A, subjected to an axial compressive load P, as
shown in Fig. The compressive stress induced is given by; p=P/A

P

/7
ﬁ/

If the compressive load on the short column is gradually increased, a stage will reach when the
column will be on the point of failure by crushing. The stress induced in the column
corresponding to this load is known as crushing stress and the load is called crushing load.
Let, P. = Crushing load,

o= Crushing stress, and

A = Area of cross-section

o.=P.J/A

All short columns fail due to crushing.

Failure of a Long Column:

A long column of uniform cross-sectional area A and of length |, subjected to an axial
compressive load P, is shown in Fig. A column is known as long column, if the length of the
column in comparison to its lateral dimensions, is very large Such columns do not fail by
crushing alone, but also by bending (also known buckling) as shown in figure. The buckling load
at which the column just buckles, is known as buckling or crippling load. The buckling load is
less than the crushing load for a long column. Actually the value of buckling load for long
columns is low whereas for short columns the value of buckling load is relatively high.



Let |=Length of along column
P = Load (compressive) at which the column has just buckled
A = Cross-sectional area of the column
e = Maximum bending of the column at the centre
O, = Stress due to direct load = P/A
Op = Stress due to bending at the centre of the column = (P xe) /Z

Where,

Z = Section modulus about the axis of bending.
The extreme stresses on the mid-section are given by:

Maximum stress = 0, + 0}, and

Minimum stress = 0,— Oy,
The column will fail when maximum stress (i.e., 0, + Op) is more than the crushing stress o.. But
in case of long columns, the direct compressive stresses are negligible as compared to buckling
stresses. Hence very long columns are subjected to buckling stresses only.

Assumptions made in the Euler’s Column theory:

The following assumptions are made in the Euier's column theory:

The column is initially perfectly straight and the load is applied axially.

The cross-section of the column is uniform throughout its length.

3. The column material is perfectly elastic, homogeneous and isotropic and obeys Hooke's
law.

The length of the column is very large as compared to its lateral dimensions.

The direct stress is very small as compared to the bending stress.

The column will fail by buckling alone.

The self-weight of column is negligible.

N —

NOoO O A

End conditions for Long Columns:In case of long columns, the stress due to direct load
is very small in comparison with the stress due to buckling. Hence the failure of long columns



takes place entirely due to buckling (or bending). The following four types of end conditions of
the columns are important:

1. Both the ends of the column are hinged (or pinned).

2. One end is frxed and the other end is free.

3. Both the ends of the column are frxed.

4. One end is frxed and the other is pinned.

For a hinged end, the deflection is zero. For a fixed end the deflection and slope are zero.
For a free end the deflection is not zero.

Sign Conventions:

The following sign conventions for the bending of the columns will be used :

1. A moment which will bend the column with its convexity towards its initial central line as
shown in Fig. (a) is taken as positive. In Fig (a), AB represents the initial centre line of a
column. Whether the column bends taking the shape AB' or AB", the moment producing this
type of curvature is positive.

2. A moment which will tend to bend the column with its concavity towards its initial centre line

as shown in Fig. (b) is taken as negative.
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Expression for crippling load when both the ends of the Column are hinged:
The load at which the column just buckles (or bends) is called crippling load. Consider a column
AB of length | and uniform cross-sectional area, hinged at both of its ends A and B. Let P be the
crippling load at which the column has just buckled. Due to the crippling load, the column will
deflect into a curved form ACB as shown in Fig.

(P
B
S
rithsy,
== \




Consider any section at a distance r from the end A.
Let y = Deflection (lateral displacement) at the section.
The moment due to the crippling load at the section = -P x y (- ve sign is taken due to sign

convention)
d?y
But moment =kl —=.
dx
Equating the two moments, we have
d* d?
EI dxf =-P.y or EI dx;’ +P.y=0
e L 3
or ] =T dh 0

The solution® of the above differential equation is

[P : r
y=C, .cos [xvﬁj + C, . sin .x F o7
Where C4and C; are the constants of integration and the values are obtained as follows:
AtA,x=0andy=0
Substituting these values in equation (i), we get
0=C,.c0o80°+C,sin0

=C’lx1+C2><O (- cos 0=1andsin 0=0)
=C’1
C,=0. .Liz)

(ii) At B, x =l and y = 0 (See Fig. 19.4).
Substituting these values in equation (i), we get

P { P )
0=C,.cos I x EI +Cz.sinll>‘ _E7J

(- [P
=0+C,.sin | I VED [+ €, = 0 from equation (ii)]
; P
= C, sin [l EJ ...(Zii)

From equation (iii), it is clear that either C, = 0

sl B 1
sin (l VEL = 0.
As if C1 =0, then if C, is also equals to zero, then from EQq" no. (i), we will find that y = 0. This

means that the bending of the column will be zero or the column will not bend at all, which is not
true.

sin {l |{?J =0
VEI

= s8in 0 or sin 7 or sin 27 or sin 3w or ...

Ut =Qurmor2Znor 3nor...

J ]
VEI
Taking the least practical value.



Expression for crippling load when one end of the column is fixed and the
other is free:
Consider a column AB, of length | and uniform cross-sectional area, fixed at the end A and free
at the end B. The free end will sway sideways when load is applied at free end and curvature in
the length | will be similar to that of upper half of the column whose both ends are hinged.
Let P is the crippling load at which the column has just buckled. Due to the crippling load P, the
column will deflect as shown in Fig., in which AB is the original position of the column and AB', is
the deflected position due to crippling load P.
Consider any section at a distance x from the fixed end A.
Let vy = Deflection (or lateral displacement) at the section
a = Deflection at the free end B'
Then moment at the section due to the crippling load =P (a - y)
(+ve. sign is taken due to sign convention)

P
|<—a—b’

Bu

B

; d%y
But moment is also =EI aa-
.. Equating the two moments, we get
2

d
EI

Ex—g=P(a—y)=P.a—P.y

d2
or EI?d;2X+P.y=P.a
d%y P P
i e Y= G
dx El EI
The solution of the Differential Equation is:

or (A)



y=C, .cos [x "—%] + C, . sin (x EL;) +a --(8)

Where C4and C, are the constants of integration and the values are obtained from the boundary
conditions, which are as follows:

i. At fixed end, the deflection as well as slope will be zero.

d
Hence at end A (which is fixed), the deflection ¥ = 0 and also slope a‘y = 1.

Henceat A, x=0andy=0
Substituting these values in equation (i), we get
0=C,.co080+C,s8in0+a

=Clx1+sz0+a {(+ cos0=1,8in0=0)
=Cl+a
C,=—-a ..(32)
At Ax:Oanng=0.
> dx

Differentiating the equation (i) w.r.t. x, we get

dy. _ ; P P P P
e 1+ 1) sin (x _EI} "’_EI + C, cos xWa—EI ‘NEI +0
bty ,P P P

=€ L= o 2.
L VET Sm(xVEI}+Cz' El °°s(x E)

dy
ButatA,x—()and — =0
dx 7

. The above equation becomes as

! it P
0=-0C, . Es1n0+C2 Er 050
[P P [P
==C, \[— = = =
IVEIXO+C2' EIXI_C2VE['

From the above equation it is clear that either C,=0.

P
‘(—— = 0.
EI
But for the crippling load P, the value of 1}% cannot be equal to zero.

& € =0,
2
Substituting the values of C,; =—a and C, = 0 in equation (i), we get

y=—a.cos | x ol e -~ Azer)

But at the free end of the column, x=1and y = a, i
Substituting these values in equation (i), we get

: FF
a=-=qa.cos|]. s + a
VEI

ET

)\
or 0=—a.cos[l- i) oracos(l. iJ:O
< /



But ‘@’ cannot be equal to zero

s \
\

cos | l. )J— | =0=cos — 8 2Py
\ v EI | cos 5 Or cos 5 Orcos g OF -
! = . 3x ] 5
b7 El_?.m g OF o e
Taking the least practical value,
[P T [P 7
l. [r— e or f— —_ —
YEY 2 VEI 2
2
or P = & EI
47%

Expression for the crippling load when both ends of the column are fixed:
Consider a column AB of length | and uniform cross-sectional area fixed at both ends A and B as
shown in Fig. Let P is the crippling load at which the column has buckled. Due to the crippling
load P, the column will deflect as shown. Due to fixed ends, there will be fixed end moments say
My at the ends A and B. The fixed end moments will be acting in such direction so that slope at
the fixed ends becomes zero.

Consider a section at a distance x from the end A. Let the deflection of the column at the section
is y. As both the ends of the column are fixed and the column carries a crippling load, there will
be some fixed end moments at A and B.

Let Mo = Fixed end moments at A and B,
Then moment at the section = My~ P.y

. d2y
But moment at the section is also = EI e

», Bquating the two moments, We get

d%y
El-gx'r =M,-Py

or E1E+P'y=‘0



—— ...(A)
d2y P = Mo (A
or % + EI‘ ~ o= El
o My P_P M,
=R TBETP
The solution® of the above differential equation is

P M ;
P = e foilet ...(l)
y;Cl.cos(x' 7_,;7)+02-8m["' EI)"' P

Whele C a.lld C are constant Of lntegratloll alkd tllelx Ualues are Obtalned frorli bou]lda!y
1 2

conditions. Boundary conditions are :

ﬂ = A is a fixed end.
(i) At A, x =0,y = 0 and also = =0asAl

g‘—x = B is also a fixed end.
(ii)At.B,x:l,y=0andalso Tx =0 as

Substituting the value x = 0 and y = 0 in equation no (i), we get.

0=C’1x1+02><0+%
M,
=C!+—Pg
M,
Cl'—--*pil

Differentiating equation (i), with respect to x, we get.

ﬂ_ . P 4.5 ,P =
T ]-(—I)SIH(x- EIJ. E-‘»-Czcos(x.\E&I). E+O

= : P} F 2 B
--Clsn'n(x. EI,' E+C2cos(x. EJ B

d.
Substituting the value x = 0 and d—i" = 0, the above equation becomes

O=—C1><O+sz1x e | £76

Er
P
=€ Va7 -

From the above equation, it is clear that either C, =0 or ‘f};} = 0. But for a given

sin0=Oandcoso=1)

crippling load P, the value of 2 /—EPT cannot be equal to zero.

C2=0.

M
Now substituting the values of C,=— po and C, = 0 in equation (Z), we get

K __ZMQ 2 ju0
¥y = P cos(x‘f I)+O+

= _MO ’ 2 ;MO sty

= — P2 COoSs | x =T e =) . A7ZzZ)

At the end B of the column, x =7 and y = 0.
Substituting these values in equation (iiZ), we get

__ My e M,
0= P cos(l. EJ#— P

% [P _ M,
or P cos [l. EJ 5 o
T M, Pr
or cos | 2. [— | = x = 1 = cos 0, cos 2n, cos 4:e, cos 6, ...
( EIJ P M, e e



= Tl 22
i \ ET

Taking the least practical value,

=0, 2. 4, B, ...

o) P . nEl

A V&I =21 or P= 12
Expression for the crippling load when one end of the column is fixed and
the other end is hinged (or pinned):
Consider a column AB of length | and uniform cross-sectional area, fixed at the end A and
hinged at the end B as shown in Fig. Let P is the crippling load at which the column has buckled.
Due to the crippling load P, the column will deflect as shown in Fig. There will be fixed end
moment (My) at the fixed end A. This will try to bring back the slope of deflected column zero at
A. Hence it will be acting anticlockwise at A. The fixed end moment My at A is to be balanced.
This will be balanced by a horizontal reaction (H) at the top end B as shown in Fig.

Consider a section at a distance x from the end A
Let y = Deflection of the column at the section,

Mo = Fixed end moment at A, and
H = Horizontal reaction at B.
3
e, o)
iy
| i /‘""
X é /,v"
s

p
The moment at the section = Moment due to crippling load at B
+ Moment due to horizontal reaction at B
=—P.y+ H . .({I—x)
But the moment at the section is also
(!z:f

Eqgquating the two moments, we get

=FEI

72
™y

El s =—P.y+H(@—x)
dx”
.12
f‘]r_:#/".y:[]r{_ x
ax
2 >
& 2 o Y= = (I —x) (Dividing by EI) ...(A)
G WP I
H P P H({l - x)
i/ -8 S 4 -

By s B e



The solution® of the above differential equation is

T [P H A
y_Clcos(x —E—I]+C sxn( VEI]+—(l—x) .. (2

where C, and C, are constants of integration and their values are obtained from boundary
ﬂondltlons Boundary conditions are :

(i) At the fixed end A, x = 0, v = O and also g; 0

(ii) At the hingedend B, x =7 andy = 0.
Substituting the value x = 0 and ¥ = 0 in equation (i), we get

T Y S
0=C’,x1+sz0+»F (1_0)=C1"'_}T
H
C1=_F = L{ZT)

Differentiating the equation () w.r.t. x, we get

. B
%:Cl(—l)sin[x. 2—] i+Czcos[x. f—J\!—i—%

EI EI ET BI
=—C,sin(x. %] %+Cgcos{x. 5]\{;&?—%
AtA,x:Oand%:O.
0=—C1x0+02.1.‘/—E?7—-I;— (- sin0=0,c080=1)
=Cz‘/g—% or CZ=‘}IF‘; 'l%{
Substituting the values of C; = — % yland C, = -I[-IT —l%l- n equation (i), we get

—Ezsxfi+-fi-"‘:-1-' T R e
== e EI I8 A o3 g T e

At theend B, x =1 and y = 0.
Hence the above egquation becomes as

o H [EI = H 0 3
=—%‘°°3(‘J%J+F B sua(l ’m]*P“ )
H P E S Bl G ’.ﬂ +0
—_-—ﬁlcos(l ——EI}"‘ = P sin | I 0 4
- g s e 20 £ 7
ox FJ’FS“‘(‘ E]‘les(

£
=I
’ H ¥ 2 e P
or sin [ ) ? ﬁ > —’EI - COos [l -——EI)
£ P
=1. T2 cos (z : ﬁ]
’ P ’ 72
or tan [l H} =1 . —EI =
~ - - P
OV i i —_ = adians
The solution to the above equation 1S, =2 =T 4.5 radia

Squaring both sides, we get

P
2 —— = 4.5% = 20.25
[ Fori 4.5
s P = 20.25 ‘i‘z"’
But approximately 20.25 = 272
2n?EI

i Be=—p



Effective length (or equivalent length) of a column:
The effective length of a given column with given end conditions is the length of an equivalent
column of the same material and cross-section with hinged ends and having the value of the
crippling load equal to that of the given column. Effective length is also called equivalent length.
Let L = Effective length of a column

| = Actual length of the column and

P = Crippling load for the column
Then the crippling load for any type of end condition is given by

2FI

2

The crippling load (P) in terms of actual length and effective length and also the relation between
effective length and actual length are given in Table below.

S No. | End conditions Crippling load in terms of Relation between
of column effective length
Actual length Effective length and actual length
2 2
EI n“El
1. | Both ends hinged a 12 ’II 3 L,=1
e
2 2
El “E
2. | One end is fixed i . L =2
41* R \
and other is free
i | S s it 47°El 22El w2
: oth ends fixe 2 I‘ez e= 3
4r°EI N !
4. | One end fixed and 2 12 L = 7z
e
other is hinged

There are two values of moment of inertia i.e., Ixxand lyy.
The value of | (moment of inertia) in the above expressions should be taken as the least value of
the two moments of inertia as the column will tend to bend in the direction of least moment of
inertia.
Crippling stress in Terms of Effective Length and Radius of Gyration:
The moment of inertia (I) can be expressed in terms of radius of gyration (k) as
I = Ak? where A = Area of cross-section.
As I is the least value of moment of inertia, then
k = Least radius of gyration of the column section.
Now crippling load P in terms of effective length is given by
n’El _ =°E x Ak*

P = = (’.‘ I= Ak2)
B e

wExA nlExA
— = - ...(19.6)

L2 LZ
* [k)




And the stress corresponding to crippling load is given by
_ Cripplingload P
B Area ~—
Ex A
= J.‘_,—Lf? (Substituting the value of P)
Al =%
|\ k)

Crippling stress

2
_ WE (197

Slenderness Ratio:
The ratio of the actual length of the column to the least radius of gyration of the column is known
as slenderness ratio.

]
¢

Actual length

Sle

[east radius of gyration R
PP ) :
Limitations of the Euler’s Formula:
From equation {19.6), we have
. R 2 O
1 2 strpss = 7o
A . )
~Iumn with both ends hinged, L, = 7. Hence Crippling stress becomes as = - ; o
For a column with both enas mnged, : :
\ &

is slenderness ratio.

if the slenderness ratio i.e. (I/k) is small the crippling stress (or the stress at failure) will be high.
But for the column material the crippling-stress cannot be greater than the crushing stress.
Hence when the slenderness ratio is less than a certain limit Euler's formula gives a value of
crippling stress greater than the crushing stress. In the limiting case we can find the value of I/k,
for which the crippling stress is equal to crushing stress.

For example, for a mid steel column with both ends hinged.
Crushing stress = 330 N/mm?
Young's modulus, E = 2.1 x 10° N/mm?
Equating the crippling stress to the crushing stress corresponding to the minimum value of
slenderness ratio, we get
Crippling stress = Crushing stress
2B 7% x 21x 105“

~ =330 or =330

|
“. k)

L _ moms = 79.27, say 80.
Hence if the slenderness ratio is less than 80 for mild steel column with both ends hinged, the Euler’s

formula will not hold good.



Problem1. A hollow mild steel tube 6 m long 4 cm internal diameter and 6 mm thick is used as a
strut with both ends hinged. Find the crippling load and safe load taking factor of
safety as 3. Take E =2 x 10° N/ mm?.

Sol. Given : d

Length of tube, =6 m =600 cm

Internal dia., d=4cm

Thickness, t=5mm=0.5cm

.. External dia., D=d+2t=4+2x05=4+1=5cm
Young’s modulus, E =2 x 10° N/mm?2

Factor of safety =30

M t ofinertin ot : ik TR [ Ly~ S
oment of inertia of section, / 64 (D d?) 64 (£53 4%] em*
14
=64 (625 — 256) = 18.11 cm* = 18.11 x 10* mm*
Since both ends of the strut are hinged.
Effective length, L, =7 = 600 cm = 6000 mm
Let P = Crippling load

Using equation (19.5), we get

po XEI
=73
29 3° «18.11% 102
_m x20x10°x1811x 107 _ 9999.9 say 9930 N. Ans.
6000~
Crippling load 9930 e =
And safe load = —— = —— =3810 N. Ans:
Amnd safe load Factor of safety 3.0

Problem2. A simply supported beam of length 4m is subjected to a uniformly distributed load of
30 KN/m over the whole span and deflects 15 mm at the centre. Determine the
crippling load the beam is used as a column with the following conditions:

(i) One end fixed and another end hinged
(ii) Both the ends pin jointed.
Sol. Given :
Length, L = 4 m = 4000 mm
Uniformly distributed load, w = 30 kN/m = 30,000 N/m
— 30,000 N/mm = 30 N/mm
1000
Deflection at the centre, & = 15 mm.
For a simply supported beam, carrying U.D.L. over the whole span, the deflection at the
centre is given by,

5 wx L*
&= o x
584 Bl
15 5 30 x 4000*
: e S0P St PR
> 384 EI
= 5 30 x 4000*
Il e e
384 15
5 3x256 o .
= ») ok x 1018 = = x 1018 N mm?2.
384 15 3 :
(i) Crippling load when the beam is used as a column with one end fixed and other end

ainged.
The crippling load P for this case in terms of actuai length is given by equation (19.4) as
21 % BI : :
~——— , where I = actual length = 4000 mm

3

g Sk f %10
- ] — = 8224.5 kIN. Ans.
4000~




’ : . ) L e

(ii) Crippling load when both the ends are pin-jointed

This is given by equation (19.1) in terms of actual length as

2n° x EI
2

J
!

where I = actual length = 4000 mm

P =

= - =4112.25 kN. Ans.
)

Rankine’s Formula:

We have learnt that Euler's formula gives correct results only for very long columns. But what
happens when the column is a short or the column is not very long. On the basis of results of
experiments performed by Rankine, he established an empirical formula which is applicable to
all columns whether they are short or long. The empirical formula given by Rankine is known as
Rankine’s formula, which is given as

i ke SO )
P P("‘ PE
where P = Crippling load by Rankine’s formula

P, = Crushing load = o, x A
o, = Ultimate crushing stress
A = Area of cross-section
P, = Crippling load by Euler’s formula
=Bl
3 >

in which L, = Effective len gth

For a given column material the crushing stress o; is a constant. Hence the crushing load P,
(which is equal to o x A) will also be constant for a given cross-sectional area of the column. In
equation (i), Pcis constant and hence value of P depends upon the value of Pg. But for a given
column material and given cross-sectional area, the value of Pg depends upon the effective
length of the column.

(i) If the column is a short, which means the value of L. is small, then the value of Pg will
be large. Hence the value of 1/Pg will be small enough and is negligible as compared
to the value of 1/P¢ . Neglecting the value of 1/Pg in equation (i), we get,

1
% — E or P — P(-..
Hence the crippling load by Rankine's formula for a short column is approximately

equal to crushing load. Also we have seen that short columns fail due to crushing.

(i) If the column is long, which means the value of L. is large. Then the value of Pg will be
small and the value of 1/Pg will be large enough compared with 1/Pc.Hence the value
of 1/Pc may be neglected in equation (i).
1
—13 = P—E or P — PE‘
(i)  Hence the crippling load by Rankine's formula for long columns is approximately equal

to crippling load given by Euler's formula.

1
Hence the Rankine’s formula % = —Pl— + B gives satisfactory results for all lengths of
s E

columns, ranging from short to long columns.

Now the Rankine’s formula is & = Pe = s Pe=Bp



Taking reciprocal to both sides, we have
Fo-Pgife |
= PE + PC 1+ EC_

E -
(Dividing the numerator and denominator by Pp)

2
S [ Pc=0c.AandPE=u EIJ

2 e ghrlustly T 2
? EI] -
§%
But I = Ak?, where £ = least radius of gyration
The above equation becomes as

P O, .A % 4
o

A

o, .A.L2 oy
] 10 il S e IR WO = =
+n2E.Ak2 1+32E ( J
__G..A

Tade
1+a.(kJ

o o s
where a = 5 LE and is known as Rankine’s constant.
it

- (19.9)

The equation (19.9) gives crippling load by Rankine’s formula. As the Rankine formula
is empirical formula, the value of ‘¢’ is taken from the results of the experiments and is not
calculated from the values of o, and E.

The values of o, and « for different columns material are given below in Table 19.2.

l 8. No. Material o, in N/mm? a
1
; 5 Wmught Iron 250 m
2 Cast Tron 550 ﬁ
3. Mild Steel 320 %0
4, Timber 50 %

Tl = 1. % . san aa=  awnr - - 4



