
DEPARTMENT OF MECHANICAL ENGINEERING
STRENGTH OF MATERIALS



the body, i.e. the nature of forces set up within a body to balance the effect of the externally 
applied forces. 

The externally applied forces are termed as loads. These externally applied forces may be due 
to any one of the reason. 

(i)   due to service conditions 

(ii)  due to environment in which the component works 

(iii)  through contact with other members 

(iv)  due to fluid pressures 

(v)   due to gravity or inertia forces. 

As we know that in mechanics of deformable solids, externally applied forces acts on a body 
and body suffers a deformation. From equilibrium point of view, this action should be opposed 
or reacted by internal forces which are set up within the particles of material due to cohesion. 

These internal forces give rise to a concept of stress. Therefore, let us define a stress Therefore, 
let us define a term stress 

Stress: 

 

Let us consider a rectangular bar of some cross – sectional area and subjected to some load or 
force (in Newtons ) 

Let us imagine that the same rectangular bar is assumed to be cut into two halves at section 
XX. The each portion of this rectangular bar is in equilibrium under the action of load P and 
the internal forces acting at the section XX has been shown 

 

Now stress is defined as the force intensity or force per unit area. Here we use a symbol  to 
represent the stress. 



 

Where A is the area of the X – section 

 

Here we are using an assumption that the total force or total load carried by the rectangular bar 
is uniformly distributed over its cross – section. 

But the stress distributions may be for from uniform, with local regions of high stress known 
as stress concentrations. 

If the force carried by a component is not uniformly distributed over its cross – sectional area, 
A, we must consider a small area, ‘δA' which carries a small load δP, of the total force ‘P', 
Then definition of stress is 

 

As a particular stress generally holds true only at a point, therefore it is defined mathematically 
as 

 

Units : 

The basic units of stress in S.I units i.e. (International system) are N / m2 (or Pa) MPa = 106 Pa 
, GPa = 109 Pa, KPa = 103 Pa 

Some times N / mm2 units are also used, because this is an equivalent to MPa. While US 
customary unit is pound per square inch psi. 

TYPES OF STRESSES : 

Only two basic stresses exists : (1) normal stress and (2) shear shear stress. Other 
stresses either are similar to these basic stresses or are a combination of these e.g. bending 
stress is a combination tensile, compressive and shear stresses. Torsional stress, as encountered 
in twisting of a shaft is a shearing stress. 

Let us define the normal stresses and shear stresses in the following sections. 

Normal stresses : We have defined stress as force per unit area. If the stresses are normal to 
the areas concerned, then these are termed as normal stresses. The normal stresses are generally 
denoted by a Greek letter (  ) 



 

This is also known as uniaxial state of stress, because the stresses acts only in one direction 
however, such a state rarely exists, therefore we have biaxial and triaxial state of stresses where 
either the two mutually perpendicular normal stresses acts or three mutually perpendicular 
normal stresses acts as shown in the figures below : 

 

Tensile or compressive stresses : 

The normal stresses can be either tensile or compressive whether the stresses acts out of the 
area or into the area 

 

Shear stresses : 

Let us consider now the situation, where the cross – sectional area of a block of material is 
subject to a distribution of forces which are parallel, rather than normal, to the area concerned. 
Such forces are associated with a shearing of the material, and are referred to as shear forces. 
The resulting force interistes are known as shear stresses. 



 

The resulting force intensities are known as shear stresses, the mean shear stress being equal 
to 

 

Where P is the total force and A the area over which it acts. 

As we know that the particular stress generally holds good only at a point therefore we can 
define shear stress at a point as 

 

The greek symbol τ ( tau ) ( suggesting tangential ) is used to denote shear stress. 

However, it must be borne in mind that the stress ( resultant stress ) at any point in a body is 
basically resolved into two components and  one acts perpendicular and other parallel to the 
area concerned, as it is clearly defined in the following figure. 

 

The single shear takes place on the single plane and the shear area is the cross - sectional of the 
rivett, whereas the double shear takes place in the case of Butt joints of rivetts and the shear 
area is the twice of the X - sectional area of the rivett. 

 

 



1.Find the stresses in each section of the bar shown in Fig. and      (ii) find the total 
extension of the bar Shown in Fig. E = 2 × 105 N/mm2. Take P=40KN.      

  

 

 

  

 

  

 

 

 

 

 



2. A member ABCD is subjected to point loads P1, P2, P3, P4 as shown in fig. Calculate the 
force P2 necessary for equilibrium, if P1 = 45 KN, P3 = 450 KN and P4 = 139 KN. Determine 
the total elongation of the member, assuming the modulus of elasticity to be 2.1 x 105 N/mm2 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

𝜹𝒍 = 𝟎. 𝟒𝟗𝟏𝟒𝒎𝒎 

Thermal stresses, Bars subjected to tension and Compression 

Compound bar: In certain application it is necessary to use a combination of elements or bars 
made from different materials, each material performing a different function. In over head 
electric cables or Transmission Lines for example it is often convenient to carry the current in 
a set of copper wires surrounding steel wires. The later being designed to support the weight 
of the cable over large spans. Such a combination of materials is generally termed compound 
bars. 



Consider therefore, a compound bar consisting of n members, each having a different length 
and cross sectional area and each being of a different material. Let all member have a common 
extension ‘x' i.e. the load is positioned to produce the same extension in each member. 

 

 

Where Fn is the force in the nth member and An and Ln are its cross - sectional area and length. 

Let W be the total load, the total load carried will be the sum of all loads for all the members. 

Therefore, each member carries a portion of the total load W proportional of EA / L value. 

if the length of each individual member in same then, we may write  

Thus, the stress in member '1' may be determined as   𝜎1 = F1 / A1 

Determination of common extension of compound bars: In order to determine the common 
extension of a compound bar it is convenient to consider it as a single bar of an imaginary 
material with an equivalent or combined modulus Ec. 

Assumption: Here it is necessary to assume that both the extension and original lengths of the 
individual members of the compound bar are the same, the strains in all members will than be 
equal. 

Total load on compound bar = F1 + F2+ F3 +………+ Fn 

where F1 , F 2 ,….,etc are the loads in members 1,2 etc 

But force = stress . area,therefore 

s (A 1 + A 2 + ……+ A n ) = s1 A1 + s2 A2 + ........+sn An 



Where s is the stress in the equivalent single bar 

Dividing throughout by the common strain Î . 

 

1.A Mild steel rod of 20 mm diameter and 300 mm long is enclosed centrally inside a hollow 
copper tube of external diameter 30 mm and internal diameter 25 mm. The ends of the rod and 
tube are brazed together, and the composite bar is subjected to an axial pull of 40 KN. If E for 
steel and copper is 200 GN/m2 and 100 GN/m2 respectively, find the stresses developed in the 
rod and the tube also find the extension of the rod. 

GIVEN DATA 

20Dia of steel rod mm  

2 220 100
4SArea of steel rod A mm      

 2 2 230 25 215.98
4CArea of Copper tube A mm

      

2 3 2200 / 200 10 /SE GN m N mm    ;  2 3 2100 / 100 10 /CE GN m N mm    

TO FIND 

Stresses on the tube and rod 

Solution 
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2.A reinforced concrete column 50cm x 50cm in section is reinforced with 4 steel bars of 2.5cm 
diameter, one in each corner. The column is carrying a load of 2 MN. Find the stresses in the 
concrete and steel bars.         
  

 

 

 



 

Compound bars subjected to Temp. Change : Ordinary materials expand when heated and 
contract when cooled, hence , an increase in temperature produce a positive thermal strain. 
Thermal strains usually are reversible in a sense that the member returns to its original shape 
when the temperature return to its original value. However, there here are some materials which 
do not behave in this manner. These metals differs from ordinary materials in a sence that the 
strains are related non linearly to temperature and some times are irreversible .when a material 
is subjected to a change in temp. is a length will change by an amount. 

dt = a .L.t 

or Ît= a .L.t or s t= E .a.t 

 

a = coefficient of linear expansoin for the material 

L = original Length t = temp. change 

Thus an increase in temperature produces an increase in length and a decrease in 
temperature results in a decrease in length except in very special cases of materials with zero 
or negative coefficients of expansion which need not to be considered here. 

If however, the free expansion of the material is prevented by some external force, then 
a stress is set up in the material. They stress is equal in magnitude to that which would be 
produced in the bar by initially allowing the bar to its free length and then applying sufficient 
force to return the bar to its original length. 

Change in Length = a L t 

Therefore, strain = a L t / L 

   = a t 



Therefore ,the stress generated in the material by the application of sufficient force to remove 
this strain 

     = strain x E 

or  Stress = E a t 

Consider now a compound bar constructed from two different materials rigidly joined together, 
for simplicity. 

Let us consider that the materials in this case are steel and brass. 

 

If we have both applied stresses and a temp. change, thermal strains may be added to those 
given by generalized hook's law equation –e.g. 

 

While the normal strains a body are affected by changes in temperatures, shear strains are not. 
Because if the temp. of any block or element changes, then its size changes not its shape 
therefore shear strains do not change. 

In general, the coefficients of expansion of the two materials forming the compound bar will 
be different so that as the temp. rises each material will attempt to expand by different amounts. 
Figure below shows the positions to which the individual materials will expand if they are 
completely free to expand (i.e not joined rigidly together as a compound bar). The extension 
of any Length L is given by a L t 



 

In general, changes in lengths due to thermal strains may be calculated form equation dt = a Lt, 
provided that the members are able to expand or contract freely, a situation that exists in 
statically determinates structures. As a consequence no stresses are generated in a statically 
determinate structure when one or more members undergo a uniform temperature change. If in 
a structure (or a compound bar), the free expansion or contraction is not allowed then the 
member becomes s statically indeterminate, which is just being discussed as an example of the 
compound bar and thermal stresses would be generated. 

Thus the difference of free expansion lengths or so called free lengths 

= aB.L. t - as .L .t 

= ( aB - as ).L .t 

Since in this case the coefficient of expansion of the brass aB is greater then that for the steel as. 
the initial lengths L of the two materials are assumed equal. 

Conclusion 1. 

Extension of steel + compression brass = difference in “ free” length 

Applying Newton 's law of equal action and reaction the following second Conclusion also 
holds good. 

Conclusion 2. 

The tensile force applied to the short member by the long member is equal in magnitude to the 
compressive force applied to long member by the short member. 

Thus in this case 

Tensile force in steel = compressive force in brass 

These conclusions may be written in the form of mathematical equations as given below: 



 

Using these two equations, the magnitude of the stresses may be determined. 

1.A steel rod of 20mm diameter passes centrally through a copper tube of 50mm external 
diameter and 40mm internal diameter. The tube is closed at each end by rigid plates of 
negligible thickness. The nuts are tightened lightly home on the projecting parts of the rod. If 
the temperature of the assembly is raised by 50˚C, calculate the stress developed in copper and 
steel. Take E for steel and copper as 200 GN/m2 and 100 GN/m2 and α for steel and copper as 
12 x 10-6 per ˚C and 18 x 10-6 per ˚C.  

GIVEN DATA 

20Dia of steel rod mm  

2 220 100
4SArea of steel rod A mm      

 2 2 250 40 225
4CArea of Copper tube A mm       

050Riseof temperatureT C  

2 3 2200 / 200 10 /SE GN m N mm   ;   2 3 2100 / 100 10 /CE GN m N mm    

6 012 10S per C    :    6 018 10C per C    

TO FIND 

Stresses developed in the steel 

SOLUTION 
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214.117 /C N mm   
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ELASTIC CONSTANTS 

In considering the elastic behavior of an isotropic materials under, normal, shear and 
hydrostatic loading, we introduce a total of four elastic constants namely E, G, K, and  . 

It turns out that not all of these are independent to the others. In fact, given any two of them, 
the other two can be foundout . Let us define these elastic constants 

(i)   E = Young's Modulus of Rigidity 

          = Stress / strain 

(ii) G = Shear Modulus or Modulus of rigidity 

          = Shear stress / Shear strain 

(iii)  µ = Possion's ratio 

         µ =  lateral strain / longitudinal strain 

(iv) K = Bulk Modulus of elasticity 

          = Volumetric stress / Volumetric strain 

Where 

Volumetric strain = sum of linear stress in x, y and z direction. 

Volumetric stress = stress which cause the change in volume. 

Let us find the relations between them 

Relation between E, G and K : 

The relationship between E, G and K can be easily determined by eliminating  from the 
already derived relations 

E = 2 G ( 1 + µ ) and E = 3 K ( 1 -2µ ) 

Thus, the following relationship may be obtained 

 

1.Determine the change in length, breadth and thickness of a steel bar 4m long, 30mm wide 
and 20mm thick, when subjected to an axial pull of 120KN in the direction of its length. Take 
E= 200GPa and Poisson’s ratio = 0.3.       
  



 

 
 

 
 
 
 
 

 

 

 

 



Volumetric strains in terms of principal stresses: 

As we know that 

 

A bar of 30mm diameter is subjected to a pull of 60KN. The measured extension on gauge 
length of 200mm is 0.09mm and the change in diameter is 0.0039. Calculate the Poisson’s ratio 
and value of three moduli.          

 

 
 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A rod of length 1m and diameter 20mm is subjected to a tensile load of 20KN. The increase in 
length of the rod is 0.30 mm and the decrease in diameter is 0.0018 mm. Calculate the poisson’s 
ratio and three moduli.     
 

 
 
 
 
 
 
 
 



 
 
 

 



 
 

A steel plate 300mm long, 60mm wide and 30mm deep is acted upon by the forces shown in 
figure. Determine the change in volume. Take E = 200 KN/mm2 and Poisson’s ratio = 0.3. 
   

 
 





During the deformation, the cross sections are not distorted in any manner they remain 
plane, and the radius r does not change. In addition, the length L of the shaft remains constant. 

 

Figure 3.1 

Deformation of a circular shaft caused by the torque T. The initially straight line AB deforms 
into a helix. 

Based on these observations, we make the following 

Assumptions: 

٠ Circular cross sections remain plane (do not warp) and perpendicular to the axis of the shaft. 

٠ Cross sections do not deform (there is no strain in the plane of the cross section). 

٠ The distances between cross sections do not change (the axial normal strain is zero). 

 Each cross section rotates as a rigid entity about the axis of the shaft. Although this conclusion 

is based on the observed deformation of a cylindrical shaft carrying a constant internal torque, 

 

UNIT-II 

               

3.1 Torsion of Circular Shafts 

a. Simplifying assumptions 

Karthik
Typewritten text
TORSION & SPRINGS



we assume that the result remains valid even if the diameter of the shaft or the internal torque 
varies along the length of the shaft. 

b. Compatibility 
 Because the cross sections are separated by an infinitesimal distance, the difference in 

their rotations, denoted by the angle dθ, is also infinitesimal. 
As the cross sections undergo the relative rotation dθ, CD deforms into the helix CD. 

By observing the distortion of the shaded element, we recognize that the helix angle γis the 
shear strain of the element. 

 

 

 

From the geometry of Fig.3.2(a), we obtain DD´= ρ dθ=γdx , from which the shear strain γ is 
(3.1) 

𝛾 =
𝑑𝜃
𝑑𝑥

𝜌 
The quantity dθ/dx is the angle of twist per unit length, where θ is expressed in radians. The 
corresponding shear stress, illustrated in Fig. 3.2 (b), is determined from Hooke´s law: 
(3.2) 

𝜏 = 𝐺𝛾 = 𝐺
𝑑𝜃
𝑑𝑥

𝜌 
strain of a material element caused by twisting of the shaft; 
(b) the corresponding shear stress. 
 

 
 

 

the shear stress varies linearly with the radial distance ρ from the axial of the shaft. 



𝜏 = 𝐺𝛾 = 𝐺
𝑑𝜃
𝑑𝑥

𝜌 
 
The variation of the shear stress acting on the cross section is illustrated in Fig. 3.3. The 
maximum shear stress, denoted by 
τmax , occurs at the surface of the shaft. 
 
Note that the above derivations assume neither a constant internal torque nor a constant cross 
section along the length of the shaft. 
 
 
Figure 3.3 Distribution of shear stress along the radius of a circular shaft. 
 

 
 
Fig. 3.4 shows a cross section of the shaft containing a differential element of area dA loaded 
at the radial distance ρ from the axis of the shaft. 
 
 
 
 
 

 
 
 
Figure 3.4 Calculating the Resultant of the shear stress acting on the cross section. 
Resultant is a couple equal to the internal torque T. 
 



 

 

The shear force acting on this area is dP = τdA = G (dθ/dx) ρ dA, directed perpendicular 
to the radius. Hence, the moment (torque) of dP about the center o is ρ dP = G (dθ/dx) ρ dA. 
Summing the contributions and equating the result to the internal torque yields. 
 

∫ 𝜌𝑑𝑃 = 𝑇 

𝐺
𝑑𝜃
𝑑𝑥

∫ 𝜌2𝑑𝐴 = 𝑇 

Recognizing that is the polar moment of inertia of the crosssectional area, we can write this 
equation as G (dθ/dx) J = T , or 

𝑑𝜃
𝑑𝑥

=
𝑇
𝐺𝐽

 

 
The rotation of the cross section at the free end of the shaft, called the angle of twist θ , is 
obtained by integration: 
 

𝜃 = ∫ 𝑑𝜃 = ∫
𝑇
𝐺𝐽

𝑑𝑥
𝐿

0

𝐿

0
 

 
As in the case of a prismatic bar carrying a constant torque, then reduces the torque-twist 
relationship 

𝜃 =
𝑇𝐿
𝐺𝐽

 

 
G (dθ/dx) = T/J , which substitution into Eq. (3.2), 

𝜏 = 𝐺𝛾 = 𝐺
𝑑𝜃
𝑑𝑥

𝜌 
gives the shear stress τ acting at the distance ρ from the center of the shaft, Torsion formulas 

𝜏 =
𝑇𝜌
𝐽

 

The maximum shear stress τmax is found by replacing ρ by the radius r of the shaft: 

𝜏𝑚𝑎𝑥 =
𝑇𝑟
𝐽

 

Because Hook´s law was used in the derivation of Eqs. (3.2)- (3.5), these formulas are valid if 
the shear stresses do not exceed the proportional limit of the material shear. Furthermore, these 
formulas are applicable only to circular shafts, either solid or hollow. 
 
The expressions for the polar moments of circular areas are 
Solid shaft 

𝜏𝑚𝑎𝑥 =
2𝑇
𝜋𝑟3 =

16𝑇
𝜋𝑑3 

 
Hollow shaft 
 

𝜏𝑚𝑎𝑥 =
2𝑇

𝜋(𝑅4 − 𝑟4)
=

16𝑇
𝜋(𝐷4 − 𝑑4)

 



 
Figure 3.6 Polar moments of inertia of circular areas. 

 
Shafts are used to transmit power. The power ζ transmitted by a torque T rotating at the angular 
speed ω is given by ζ =T ω, 
where ω is measured in radians per unit time. 
 
If the shaft is rotating with a frequency of f revolutions per unit time, then ω = 2π f , which 
gives ζ = T (2π f ). Therefore, the torque can be expressed as 
 

𝑇 =
 𝜁

2𝜋𝑓
 

Composite shafts: (in series) 

If two or more shaft of different material, diameter or basic forms are connected together in 
such a way that each carries the same torque, then the shafts are said to be connected in series 
& the composite shaft so produced is therefore termed as series – connected. 

 

Here in this case the equilibrium of the shaft requires that the torque ‘T' be the same through 
out both the parts. 

In such cases the composite shaft strength is treated by considering each component shaft 
separately, applying the torsion – theory to each in turn. The composite shaft will therefore be 
as weak as its weakest component. If relative dimensions of the various parts are required then 
a solution is usually effected by equating the torque in each shaft e.g. for two shafts in series 

 

In some applications it is convenient to ensure that the angle of twist in each shaft are equal 

i.e. 1 = 2 , so that for similar materials in each shaft  

The total angle of twist at the free end must be the sum of angles 1 = 2 over each x - section 



Composite shaft parallel connection: If two or more shafts are rigidly fixed together such 
that the applied torque is shared between them then the composite shaft so formed is said to be 
connected in parallel. 

 

For parallel connection. 

Total Torque T = T1 + T2 

In this case the angle of twist for each portion are equal and  

for equal lengths(as is normaly the case for parallel shafts)  

This type of configuration is statically indeterminate, because we do not know how the applied 
torque is apportioned to each segment, To deal such type of problem the procedure is exactly 
the same as we have discussed earlier, 

Thus two equations are obtained in terms of the torques in each part of the composite shaft and 
the maximun shear stress in each part can then be found from the relations. 

 

A solid circular shaft is required transmit  95kW at 150rpm. Find out the diameter of the shaft 

if permissible shear stress is 60MPa and angle of twist is 0.3° per meter length. Take C= 1 x 

105 N/mm2. 

Given Data 

 



  
A hollow shaft with diameter ratio 3/5 is required transmit  450 kW at 120rpm. The shearing 

stress in the shaft must not exceed 60 N/mm2 and the twist in a length of 2.5 m is not to exceed 

1°. Calculate the minimum external diameter of the shaft. C= 80 N/mm2. 

Given Data 

 



 

 

A hollow shaft having an inside diameter 60% of its outer diameter, is to replace a solid shaft 

transmitting in the same power at the same speed. Calculate percentage saving in material, if 

the material to be is also the same.  



 

Design a suitable diameter for a shaft required to transmit 120KW at 180 rpm. The shear stress 
in the shaft not to exceed 70N/mm2 and the maximum torque exceeds the mean by 40%. 
Calculate the angle of twist in a length of 2m. Take C= 0.8 x 105 N/mm2.  

 

   



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 



 

The elongation of the bar is 

𝜹 =
𝟔𝟒𝑾𝑹𝟑𝒏

𝑪𝒅𝟒  

Notice that the deformation δ is directly proportional to the applied load P. The ratio of P 

to δ is called the spring constant k and is equal to 

𝑲 =
𝑾
𝜹

=
𝑪𝒅𝟒

𝟔𝟒𝑹𝟑𝒏
 

Springs in Series 

For two or more springs with spring laid in series, the resulting spring constant k is given by 

 

 

  
1
𝐾

=
1

𝐾1
+

1
𝐾2

+. … … … .. 

Springs in Parallel 

For two or more springs in parallel, the resulting spring constant is 

 

   𝐾 = 𝐾1 + 𝐾2 

 



 
A close coiled helical spring is to have a stiffness of 1.5 N/mm of compression under a 

maximum load of 60 N and maximum shearing stress of 125 N/mm2. The solid length of the 

spring (ie., when the coils are touching) is to be 50 mm. Find the diameter of the wire, mean 

diameter of the coil and no. of coil required. Take C= 4.5x104 N/mm2.  

 
OR 

Derive the relation for deflection of a closely coiled helical spring subjected to an axial 

downward load W.  

 



 

A closely coiled helical spring of mean diameter 20cm is made of 3cm diameter rod and has 

16 turns. A weight of 3kN is dropped on this spring. Find the height by which the weight should 

be dropped before striking the spring so that the spring may be compressed by 18cm. Take C= 

8 x 104 N/mm2.   

 



 
In open coiled helical spring consists of 12 coils, the stress due to bending and twisting are 75 

MPa and 92 MPa respectively. When the spring is axially loaded, find the maximum 

permissible load and diameter of wire for a maximum extension of 25mm. Assume spring index 

as 9. Take E = 210 GPa and C = 80GPa. 

 



 

A closed coil helical spring made out of 8mm diameter wire has 18 coils. Each coil is of 80mm 
mean diameter. If the maximum allowable stress in the spring is 140Mpa, determine the 
allowable load on the spring, elongation of the spring and stiffness of the spring. Take C = 82 
KN/mm2 

 



 

A laminated spring carries a central load of 5200N and it is made of ‘n’ number of 
plates,80mm wide, 7mm thick and length 500mm. Find the number of plates, if the 
maximum deflection is 10mm. Let E = 2x105N/mm2 
Given: 
W=5200N 
b=80mm 
t=7mm 
L=500mm 
d=10mm 
E = 2x105N/mm2 
 

 
 



Members Subjected to Axisymmetric Loads 

Pressurized thin walled cylinder: 

Preamble : Pressure vessels are exceedingly important in industry. Normally two types of 
pressure vessel are used in common practice such as cylindrical pressure vessel and spherical 
pressure vessel. 

In the analysis of this walled cylinders subjected to internal pressures it is assumed that the 
radial plans remains radial and the wall thickness dose not change due to internal pressure. 
Although the internal pressure acting on the wall causes a local compressive stresses (equal to 
pressure) but its value is neglibly small as compared to other stresses & hence the sate of stress 
of an element of a thin walled pressure is considered a biaxial one. 

Further in the analysis of them walled cylinders, the weight of the fluid is considered neglible. 

Let us consider a long cylinder of circular cross - section with an internal radius of R 2 and a 
constant wall thickness‘t' as showing fig. 

 

This cylinder is subjected to a difference of hydrostatic pressure of ‘p' between its inner and 
outer surfaces. In many cases, ‘p' between gage pressure within the cylinder, taking outside 
pressure to be ambient. 

By thin walled cylinder we mean that the thickness‘t' is very much smaller than the radius 
Ri and we may quantify this by stating than the ratio t / Ri of thickness of radius should be less 
than 0.1. 

An appropriate co-ordinate system to be used to describe such a system is the cylindrical polar 
one r,  , z shown, where z axis lies along the axis of the cylinder, r is radial to it and 
the angular co-ordinate about the axis. 

The small piece of the cylinder wall is shown in isolation, and stresses in respective direction 
have also been shown.   

Type of failure: 

Such a component fails in since when subjected to an excessively high internal pressure. While 
it might fail by bursting along a path following the circumference of the cylinder. Under normal 
circumstance it fails by circumstances it fails by bursting along a path parallel to the axis. This 
suggests that the hoop stress is significantly higher than the axial stress. 

UNIT-III 

THIN CYLINDERS,SPHERES AND THICK CYLINDERS 



In order to derive the expressions for various stresses we make following   

Applications : 

Liquid storage tanks and containers, water pipes, boilers, submarine hulls, and certain air plane 
components are common examples of thin walled cylinders and spheres, roof domes. 

ANALYSIS : In order to analyse the thin walled cylinders, let us make the following 
assumptions : 

•  There are no shear stresses acting in the wall. 

•  The longitudinal and hoop stresses do not vary through the wall. 

•  Radial stresses r which acts normal to the curved plane of the isolated element are neglibly 

small as compared to other two stresses especially when  

The state of tress for an element of a thin walled pressure vessel is considered to be biaxial, 
although the internal pressure acting normal to the wall causes a local compressive stress equal 
to the internal pressure, Actually a state of tri-axial stress exists on the inside of the vessel. 
However, for then walled pressure vessel the third stress is much smaller than the other two 
stresses and for this reason in can be neglected. 

Thin Cylinders Subjected to Internal Pressure: 

When a thin – walled cylinder is subjected to internal pressure, three mutually perpendicular 
principal stresses will be set up in the cylinder materials, namely 

•  Circumferential or hoop stress 

•  The radial stress 

•  Longitudinal stress 

now let us define these stresses and determine the expressions for them 

Hoop or circumferential stress: 

This is the stress which is set up in resisting the bursting effect of the applied pressure and can 
be most conveniently treated by considering the equilibrium of the cylinder. 

 



In the figure we have shown a one half of the cylinder. This cylinder is subjected to an internal 
pressure p. 

i.e.         p = internal pressure 

d = inside diameter 

L = Length of the cylinder 

t  = thickness of the wall 

Total force on one half of the cylinder owing to the internal pressure 'p' 

= p x Projected Area 

= p x d x L 

= p .d. L                       -------  (1) 

The total resisting force owing to hoop stresses σH set up in the cylinder walls 

= 2 .σH .L.t                 ---------(2) 

Because H.L.t. is the force in the one wall of the half cylinder. 

the equations (1) & (2) we get 

   2 . σH . L . t = p . d . L 

                  σH = (p . d) / 2t 

Circumferential or hoop 
Stress (σH) = (p .d)/ 2t 

Longitudinal Stress: 

Consider now again the same figure and the vessel could be considered to have closed ends 
and contains a fluid under a gage pressure p. Then the walls of the cylinder will have a 
longitudinal stress as well as a circumferential stress. 

 

Total force on the end of the cylinder owing to internal pressure 

= pressure x area 

= p x πd2 /4 

Area of metal resisting this force = πd.t. (approximately) 

because  



 

 

Change in Dimensions : 

The change in length of the cylinder may be determined from the longitudinal strain. 

Since whenever the cylinder will elongate in axial direction or longitudinal direction, this will 
also get decreased in diameter or the lateral strain will also take place. Therefore we will have 
to also take into consideration the lateral strain.as we know that the poisson's ratio (ν) is 

 

 where the -ve sign emphasized that the change is negative 

Consider an element of cylinder wall which is subjected to two mutually 𝜎r normal stresses 
σL and σH . 

Let E = Young's modulus of elasticity 

 



 

Volumetric Strain or Change in the Internal Volume: 

When the thin cylinder is subjected to the internal pressure as we have already calculated that 
there is a change in the cylinder dimensions i.e, longitudinal strain and hoop strains come into 
picture. As a result of which there will be change in capacity of the cylinder or there is a change 
in the volume of the cylinder hence it becomes imperative to determine the change in volume 
or the volumetric strain. 

The capacity of a cylinder is defined as 

V = Area X Length 

= πd2/4 x L 

Let there be a change in dimensions occurs, when the thin cylinder is subjected to an internal 
pressure. 

(i) The diameter d changes to δ d + δ d 

(ii) The length L changes to δ L + δ L 

Therefore, the change in volume = Final volume - Original volume 



  

Therefore to find but the increase in capacity or volume, multiply the volumetric strain by 
original volume. 

Hence 

Change in Capacity / Volume       or 

 

 

Cylindrical Vessel with Hemispherical Ends: 

Let us now consider the vessel with hemispherical ends. The wall thickness of the cylindrical 
and hemispherical portion is different. While the internal diameter of both the portions is 
assumed to be equal 

Let the cylindrical vassal is subjected to an internal pressure p. 



 

For the Cylindrical Portion 

 

For The Hemispherical Ends: 

 

Because of the symmetry of the sphere the stresses set up owing to internal pressure will be 
two mutually perpendicular hoops or circumferential stresses of equal values. Again the radial 
stresses are neglected in comparison to the hoop stresses as with this cylinder having thickness 
to diameter less than1:20. 

Consider the equilibrium of the half – sphere 

Force on half-sphere owing to internal pressure = pressure x projected Area 

= p. πd2/4 

 



 

Fig – shown the (by way of dotted lines) the tendency, for the cylindrical portion and the 
spherical ends to expand by a different amount under the action of internal pressure. So owing 
to difference in stress, the two portions (i.e. cylindrical and spherical ends) expand by a 
different amount. This incompatibly of deformations causes a local bending and sheering 
stresses in the neighbour hood of the joint. Since there must be physical continuity between the 
ends and the cylindrical portion, for this reason, properly curved ends must be used for pressure 
vessels. 

Thus equating the two strains in order that there shall be no distortion of the junction 

 

But for general steel works ν = 0.3, therefore, the thickness ratios becomes 

 t2 / t1 = 0.7/1.7 or 

t1 = 2.4 t2 

i.e. the thickness of the cylinder walls must be approximately 2.4 times that of the hemispheroid 
ends for no distortion of the junction to occur. 

SUMMARY OF THE RESULTS : Let us summarise the derived results 

(A)  The stresses set up in the walls of a thin cylinder owing to an internal pressure p are : 

(i) Circumferential or loop stress 

σH = pd/2t 

(ii) Longitudinal or axial stress 

σL = pd/4t 

Where d is the internal diameter and t is the wall thickness of the cylinder. 

then 

Longitudinal strain eL L  ν H] 

Hoop stain eH = 1 / E [ H  ν L ] 

(B)  Change of internal volume of cylinder under pressure 

 

(C) Fro thin spheres circumferential or loop stress 



 

Thin rotating ring or cylinder 

Consider a thin ring or cylinder as shown in Fig below subjected to a radial internal pressure p 
caused by the centrifugal effect of its own mass when rotating. The centrifugal effect on a unit 
length of the circumference is 

p = m ω2 r 

 

Fig 19.1: Thin ring rotating with constant angular velocity ω 

Here the radial pressure ‘p' is acting per unit length and is caused by the centrifugal effect if its 
own mass when rotating. 

Thus considering the equilibrium of half the ring shown in the figure, 

2F = p x 2r (assuming unit length), as 2r is the projected area 

F = pr 

Where F is the hoop tension set up owing to rotation. 

The cylinder wall is assumed to be so thin that the centrifugal effect can be assumed constant 
across the wall thickness. 

F = mass x acceleration = m ω2 r x r 

This tension is transmitted through the complete circumference and therefore is resisted by the 
complete cross – sectional area. 

Hoop stress = F/A = m ω2 r2 / A 

Where A is the cross – sectional area of the ring. 

Now with unit length assumed m/A is the mass of the material per unit volume, i.e. the 
density ρ . 

hoop stress = ρ ω2 r2 

σH = ρ. ω2 . r2 

 

 



 

 

 

 

Material subjected to combined direct and shear stresses: 

   

 

 

 

 

 

 

 

 



GRAPHICAL SOLUTION – MOHR'S STRESS CIRCLE 

The transformation equations for plane stress can be represented in a graphical form known as 
Mohr's circle. This graphical representation is very useful in depending the relationships 
between normal and shear stresses acting on any inclined plane at a point in a stresses body. 

To draw a Mohr's stress circle consider a complex stress system as shown in the figure 

 

The above system represents a complete stress system for any condition of applied load in two 
dimensions 

 

 

1.The stresses at a point in a strained material is Px = 200 N/mm2 and Py = -150 N/mm2 
and q= 80 N/mm2. Find the principal plane and principal stresses. Using graphical 
method and verify with analytical method. (Solve both methods) 

 

 

 

 

 

 



  



 

At a point in a strained material, the principal stresses are 100 N/mm2 tensile and 60 N/mm2 
compressive. Calculate the normal stress, shear stress and resultant stress on a plane inclined 
at 50 degree to the axis of major principal stress.    
 

 

 

 

 

 

 

 



 

A point in a strained material is subjected to mutually perpendicular stresses of 600 N/mm2 
(tensile) and 400 N/mm2 (compressive). It’s also subjected to a shear stress of 100 N/mm2. 
Draw the Mohr’s circle & find the principle stress & max. shear stress from diagram.  

 

 

A 5mm thick aluminium plate has a width of 300mm and a length of 600mm subjected to pull 
of 15000N and 9000N respectively in axial and transverse direction. Determine the normal, 
tangential and resultant stresses on a plane 40 degree to the greatest stress.   

 
 



 

 
 

 



 

 

 
At a point in a strained body subjected to two mutually perpendicular normal tensile stresses 
of magnitude 30MPa and 12MPa accompanied by a shear stress of 16MPa. Locate the principal 
planes and evaluate the principal stresses. Also calculate maximum shear stress. Check your 
answer in graphical method using Mohr’s circle. 

 

 



 

 

 
 



 

 
 
 

 

 

 

 

 

 

 



beam's axis. Its mode of deflection is primarily by bending. The loads applied to the beam 
result in reaction forces at the beam's support points. The total effect of all the forces acting on 
the beam is to produce shear forces and bending moments within the beam, that in turn induce 
internal stresses, strains and deflections of the beam. Beams are characterized by their manner 
of support, profile (shape of cross-section), equilibrium conditions, length, and their material. 

Types of beams 

1. Simply supported – a beam supported on the ends which are free to rotate and have no 
moment resistance. 

2. Fixed – a beam supported on both ends and restrained from rotation. 
3. Over hanging – a simple beam extending beyond its support on one end. 
4. Double overhanging – a simple beam with both ends extending beyond its supports on 

both ends. 
5. Continuous – a beam extending over more than two supports. 
6. Cantilever – a projecting beam fixed only at one end. 
7. Trussed – a beam strengthened by adding a cable or rod to form a truss.  

 

 

Types of Transverse loading on Beams; 

UNIT-IV 

TRANSVERSE LOADING ON BEAMS AND STRESSES IN BEAM 

 

 A beam is a [[structural element]] that primarily resists loads applied laterally to the 

https://en.wikipedia.org/wiki/Structural_load
https://en.wikipedia.org/wiki/Bending
https://en.wikipedia.org/wiki/Reaction_force
https://en.wikipedia.org/wiki/Shear_force
https://en.wikipedia.org/wiki/Bending_moment
https://en.wikipedia.org/wiki/Truss


 

Concept of Shear Force and Bending moment in beams: 

When the beam is loaded in some arbitrarily manner, the internal forces and moments are 
developed and the terms shear force and bending moments come into pictures which are helpful 
to analyze the beams further. Let us define these terms 



 

Fig 1 

Now let us consider the beam as shown in fig 1(a) which is supporting the loads P1, P2, P3 and 
is simply supported at two points creating the reactions R1 and R2 respectively. Now let us 
assume that the beam is to divided into or imagined to be cut into two portions at a section AA. 
Now let us assume that the resultant of loads and reactions to the left of AA is ‘F' vertically 
upwards, and since the entire beam is to remain in equilibrium, thus the resultant of forces to 
the right of AA must also be F, acting downwards. This forces ‘F' is as a shear force. The 
shearing force at any x-section of a beam represents the tendency for the portion of the beam 
to one side of the section to slide or shear laterally relative to the other portion. 

Therefore, now we are in a position to define the shear force ‘F' to as follows: 

At any x-section of a beam, the shear force ‘F' is the algebraic sum of all the lateral components 
of the forces acting on either side of the x-section. 

Sign Convention for Shear Force: 

The usual sign conventions to be followed for the shear forces have been illustrated in figures 
2 and 3. 

 

Fig 2: Positive Shear Force 



 

Fig 3: Negative Shear Force 

Bending Moment: 

 

Fig 4 

Let us again consider the beam which is simply supported at the two prints, carrying loads P1, 
P2 and P3 and having the reactions R1 and R2 at the supports Fig 4. Now, let us imagine that the 
beam is cut into two potions at the x-section AA. In a similar manner, as done for the case of 
shear force, if we say that the resultant moment about the section AA of all the loads and 
reactions to the left of the x-section at AA is M in C.W direction, then moment of forces to the 
right of x-section AA must be ‘M' in C.C.W. Then ‘M' is called as the Bending moment and is 
abbreviated as B.M. Now one can define the bending moment to be simply as the algebraic 
sum of the moments about an x-section of all the forces acting on either side of the section 

Sign Conventions for the Bending Moment: 

For the bending moment, following sign conventions may be adopted as indicated in Fig 5 
and Fig 6. 



 

 

 

 

 

 

 

Fig5:Positive Bending Moment   Fig 6: Negative Bending Moment 

Some times, the terms ‘Sagging' and Hogging are generally used for the positive and negative 
bending moments respectively. 

Procedure for drawing shear force and bending moment diagram: 

Preamble: 

The advantage of plotting a variation of shear force F and bending moment M in a beam as a 
function of ‘x' measured from one end of the beam is that it becomes easier to determine the 
maximum absolute value of shear force and bending moment. 

Further, the determination of value of M as a function of ‘x' becomes of paramount importance 
so as to determine the value of deflection of beam subjected to a given loading. 

Construction of shear force and bending moment diagrams: 

A shear force diagram can be constructed from the loading diagram of the beam. In order to 
draw this, first the reactions must be determined always. Then the vertical components of forces 
and reactions are successively summed from the left end of the beam to preserve the 
mathematical sign conventions adopted. The shear at a section is simply equal to the sum of all 
the vertical forces to the left of the section. 

When the successive summation process is used, the shear force diagram should end up with 
the previously calculated shear (reaction at right end of the beam. No shear force acts through 
the beam just beyond the last vertical force or reaction. If the shear force diagram closes in this 
fashion, then it gives an important check on mathematical calculations. 

The bending moment diagram is obtained by proceeding continuously along the length of beam 
from the left hand end and summing up the areas of shear force diagrams giving due regard to 
sign. The process of obtaining the moment diagram from the shear force diagram by summation 
is exactly the same as that for drawing shear force diagram from load diagram. 

It may also be observed that a constant shear force produces a uniform change in the bending 
moment, resulting in straight line in the moment diagram. If no shear force exists along a certain 
portion of a beam, then it indicates that there is no change in moment takes place. It may also 
further observe that dm/dx= F therefore, from the fundamental theorem of calculus the 
maximum or minimum moment occurs where the shear is zero. In order to check the validity 
of the bending moment diagram, the terminal conditions for the moment must be satisfied. If 
the end is free or pinned, the computed sum must be equal to zero. If the end is built in, the 



moment computed by the summation must be equal to the one calculated initially for the 
reaction. These conditions must always be satisfied. 

Simply supported beam subjected to a central load (i.e. load acting at the mid-way) 

 

By symmetry the reactions at the two supports would be W/2 and W/2. now consider any 
section X-X from the left end then, the beam is under the action of following forces. 

 

.So the shear force at any X-section would be = W/2 [Which is constant upto x < l/2] 

If we consider another section Y-Y which is beyond l/2 then 

 for all values greater = l/2 

Hence S.F diagram can be plotted as, 

 

.For B.M diagram: 

If we just take the moments to the left of the cross-section, 



 

Which when plotted will give a straight relation i.e. 

 

It may be observed that at the point of application of load there is an abrupt change in the 
shear force, at this point the B.M is maximum. 

A cantilever beam subjected to U.d.L, draw S.F and B.M diagram. 

 

Here the cantilever beam is subjected to a uniformly distributed load whose intensity is given 
w / length. 

Consider any cross-section XX which is at a distance of x from the free end. If we just take 
the resultant of all the forces on the left of the X-section, then 

S.Fxx = -Wx for all values of ‘x'. ---------- (1) 

S.Fxx = 0 



S.Fxx at x=1 = -Wl 

So if we just plot the equation No. (1), then it will give a straight line relation. Bending 
Moment at X-X is obtained by treating the load to the left of X-X as a concentrated load of 
the same value acting through the centre of gravity. 

Therefore, the bending moment at any cross-section X-X is 

 

The above equation is a quadratic in x, when B.M is plotted against x this will produces a 
parabolic variation. 

The extreme values of this would be at x = 0 and x = l 

 

Hence S.F and B.M diagram can be plotted as follows: 

 

Simply supported beam subjected to a uniformly distributed load [U.D.L]. 

 

The total load carried by the span would be 



= intensity of loading x length 

= w x l 

By symmetry the reactions at the end supports are each wl/2 

If x is the distance of the section considered from the left hand end of the beam. 

S.F at any X-section X-X is 

 

Giving a straight relation, having a slope equal to the rate of loading or intensity 
of the loading. 

 

The bending moment at the section x is found by treating the distributed load as 
acting at its centre of gravity, which at a distance of x/2 from the section 

 

 

So the equation (2) when plotted against x gives rise to a parabolic curve and 
the shear force and bending moment can be drawn in the following way will 
appear as follows: 



 

5. Couple. 

When the beam is subjected to couple, the shear force and Bending moment diagrams may be 
drawn exactly in the same fashion as discussed earlier. 

 

Simple Bending Theory OR Theory of Flexure for Initially Straight Beams 

(The normal stress due to bending are called flexure stresses) 

Preamble: 

When a beam having an arbitrary cross section is subjected to a transverse loads the beam 
will bend. In addition to bending the other effects such as twisting and buckling may occur, 
and to investigate a problem that includes all the combined effects of bending, twisting and 
buckling could become a complicated one. Thus we are interested to investigate the bending 
effects alone, in order to do so, we have to put certain constraints on the geometry of the 
beam and the manner of loading. 

Assumptions: 

The constraints put on the geometry would form the assumptions: 

1. Beam is initially straight , and has a constant cross-section. 



2. Beam is made of homogeneous material and the beam has a longitudinal plane of 
symmetry. 

3. Resultant of the applied loads lies in the plane of symmetry. 

4. The geometry of the overall member is such that bending not buckling is the primary cause 
of failure. 

5. Elastic limit is nowhere exceeded and ‘E' is same in tension and compression. 

6. Plane cross - sections remains plane before and after bending. 

  

  

Let us consider a beam initially unstressed as shown in fig 1(a). Now the beam is subjected to 
a constant bending moment (i.e. ‘Zero Shearing Force') along its length as would be obtained 
by applying equal couples at each end. The beam will bend to the radius R as shown in Fig 
1(b) 

As a result of this bending, the top fibers of the beam will be subjected to tension and the 
bottom to compression it is reasonable to suppose, therefore, that some where between the 
two there are points at which the stress is zero. The locus of all such points is known as 
neutral axis . The radius of curvature R is then measured to this axis. For symmetrical 
sections the N. A. is the axis of symmetry but what ever the section N. A. will always pass 
through the centre of the area or centroid. 

The above restrictions have been taken so as to eliminate the possibility of 'twisting' of 
the beam. 

Concept of pure bending: 

Loading restrictions: 

As we are aware of the fact internal reactions developed on any cross-section of a beam may 
consists of a resultant normal force, a resultant shear force and a resultant couple. In order to 
ensure that the bending effects alone are investigated, we shall put a constraint on the loading 
such that the resultant normal and the resultant shear forces are zero on any cross-section 
perpendicular to the longitudinal axis of the member, 

That means F = 0 



since  or M = constant. 

Thus, the zero shear force means that the bending moment is constant or the bending is same 
at every cross-section of the beam. Such a situation may be visualized or envisaged when the 
beam or some portion of the beam, as been loaded only by pure couples at its ends. It must be 
recalled that the couples are assumed to be loaded in the plane of symmetry. 

 

  

 

When a member is loaded in such a fashion it is said to be in pure bending.   

Bending Stresses in Beams or Derivation of Elastic Flexural formula : 

In order to compute the value of bending stresses developed in a loaded beam, let us consider 
the two cross-sections of a beam HE and GF , originally parallel as shown in fig 1(a).when 
the beam is to bend it is assumed that these sections remain parallel i.e. H'E' and G'F' , the 
final position of the sections, are still straight lines, they then subtend some angle  

Consider now fiber AB in the material, at adistance y from the N.A, when the beam bends 
this will stretch to A'B' 

 

Since CD and C'D' are on the neutral axis and it is assumed that the Stress on the neutral axis 
zero. Therefore, there won't be any strain on the neutral axis 



 

 

Consider any arbitrary a cross-section of beam, as shown above now the strain on a fibre at a 
distance ‘y' from the N.A, is given by the expression 

 

Now the term is the property of the material and is called as a second moment of area 
of the cross-section and is denoted by a symbol I. 

Therefore 

 

This equation is known as the Bending Theory Equation. The above proof has involved the 
assumption of pure bending without any shear force being present. Therefore this termed as 
the pure bending equation. This equation gives distribution of stresses which are normal to 
cross-section i.e. in x-direction. 

 

 



 

Shearing Stresses in Beams 

All the theory which has been discussed earlier, while we discussed the bending stresses in 
beams was for the case of pure bending i.e. constant bending moment acts along the entire 
length of the beam. 

 

Let us consider the beam AB transversely loaded as shown in the figure above. Together with 
shear force and bending moment diagrams we note that the middle potion CD of the beam is 
free from shear force and that its bending moment. M = P.a is uniform between the portion C 
and D. This condition is called the pure bending condition. 

Since shear force and bending moment are related to each other F= dM/dX (eq) therefore if the 
shear force changes than there will be a change in the bending moment also, and then this won't 
be the pure bending. 

Conclusions : 

Hence one can conclude from the pure bending theory was that the shear force at each X-
section is zero and the normal stresses due to bending are the only ones produced. 

In the case of non-uniform bending of a beam where the bending moment varies from one X-
section to another, there is a shearing force on each X-section and shearing stresses are also 
induced in the material. The deformation associated with those shearing stresses causes “ 
warping “ of the x-section so that the assumption which we assummed while deriving the 

relation that the plane cross-section after bending remains plane is violated. Now due 
to warping the plane cross=section before bending do not remain plane after bending. This 
complicates the problem but more elaborate analysis shows that the normal stresses due to 

bending, as calculated from the equation . 



The above equation gives the distribution of stresses which are normal to the cross-section that 
is in x-direction or along the span of the beam are not greatly altered by the presence of these 
shearing stresses. Thus, it is justifiable to use the theory of pure bending in the case of non 
uniform bending and it is accepted practice to do so. 

Let us study the shear stresses in the beams. 

Concept of Shear Stresses in Beams : 

By the earlier discussion we have seen that the bending moment represents the resultant of 
certain linear distribution of normal stresses x over the cross-section. Similarly, the shear 
force Fx over any cross-section must be the resultant of a certain distribution of shear stresses. 

Derivation of equation for shearing stress : 

 

Assumptions : 

1. Stress is uniform across the width (i.e. parallel to the neutral axis) 

2. The presence of the shear stress does not affect the distribution of normal bending stresses. 

It may be noted that the assumption no.2 cannot be rigidly true as the existence of shear stress 
will cause a distortion of transverse planes, which will no longer remain plane. 

In the above figure let us consider the two transverse sections which are at a 
distance ‘ δx' apart. The shearing forces and bending moments being F, F + δF and M, M 
+ δM respectively. Now due to the shear stress on transverse planes there will be a 
complementary shear stress on longitudinal planes parallel to the neutral axis. 

Let τ be the value of the complementary shear stress (and hence the transverse shear stress) at 
a distance ‘Y'0 from the neutral axis. Z is the width of the x-section at this position 

A is area of cross-section cut-off by a line parallel to the neutral axis. 

= distance of the centroid of Area from the neutral axis. 



Let σ, σ+ dσ are the normal stresses on an element of area δA at the two transverse sections, 
then there is a difference of longitudinal forces equal to ( dσ . δA) , and this quantity summed 
over the area A is in equilibrium with the transverse shear stress  on the longitudinal plane of 
area z δx . 

 

The figure shown below indicates the pictorial representation of the part. 

 

So substituting  



Where ‘z' is the actual width of the section at the position where ‘ότ ' is being calculated and I 
is the total moment of inertia about the neutral axis. 

Bending of Composite or Flitched Beams: 

A composite beam is defined as the one which is constructed from a combination of materials. 
If such a beam is formed by rigidly bolting together two timber joists and a reinforcing steel 
plate, then it is termed as a flitched beam. 

The bending theory is valid when a constant value of Young's modulus applies across a section 
it cannot be used directly to solve the composite-beam problems where two different materials, 
and therefore different values of E, exists. The method of solution in such a case is to replace 
one of the materials by an equivalent section of the other. 

 

Consider, a beam as shown in figure in which a steel plate is held centrally in an appropriate 
recess/pocket between two blocks of wood .Here it is convenient to replace the steel by an 
equivalent area of wood, retaining the same bending strength. i.e. the moment at any section 
must be the same in the equivalent section as in the original section so that the force at any 
given dy in the equivalent beam must be equal to that at the strip it replaces. 

 

Hence to replace a steel strip by an equivalent wooden strip the thickness must be multiplied 
by the modular ratio E/E'. 

The equivalent section is then one of the same materials throughout and the simple bending 
theory applies. The stress in the wooden part of the original beam is found directly and that in 
the steel found from the value at the same point in the equivalent material as follows by utilizing 
the given relations. 



 

Stress in steel = modular ratio x stress in equivalent wood 

The above procedure of course is not limited to the two materials treated above but applies well 
for any material combination. The wood and steel flitched beam was nearly chosen as a just 
for the sake of convenience. 

Assumption 

In order to analyze the behavior of composite beams, we first make the assumption that the 
materials are bonded rigidly together so that there can be no relative axial movement between 
them. This means that all the assumptions, which were valid for homogenous beams are valid 
except the one assumption that is no longer valid is that the Young's Modulus is the same 
throughout the beam. 

The composite beams need not be made up of horizontal layers of materials as in the earlier 
example. For instance, a beam might have stiffening plates as shown in the figure below. 

 

Again, the equivalent beam of the main beam material can be formed by scaling the breadth of 
the plate material in proportion to modular ratio. Bearing in mind that the strain at any level is 
same in both materials, the bending stresses in them are in proportion to the Young's modulus. 

 

 

 

 

 



A cantilever 6m long carries load of 30, 70, 40 and 60KN at a distance of 0, 0.6, 1.5 and 2.4m 
respectively from the free end. Draw the shear force and bending moment diagrams for the 
cantilever beam  

 

In this there is an abrupt change of loading beyond a certain point thus, we shall have to be 
careful at the jumps and the discontinuities. 

 

For the given problem, the values of reactions can be determined as 

R2 = 3800N and R1 = 5400N 



The shear force and bending moment diagrams can be drawn by considering the X-sections at 
the suitable locations. 

 

A simply supported beam of rectangular cross section 60 x 35 mm and 3m long carrying a load 
of 5KN at mid span. Determine the maximum bending stress induced in the beam. 

 

 



DEFLECTION OF BEAMS 

Deflection of Beams 

Introduction: 

In all practical engineering applications, when we use the different components, normally we 
have to operate them within the certain limits i.e. the constraints are placed on the performance 
and behavior of the components. For instance we say that the particular component is supposed 
to operate within this value of stress and the deflection of the component should not exceed 
beyond a particular value. 

In some problems the maximum stress however, may not be a strict or severe condition but 
there may be the deflection which is the more rigid condition under operation. It is obvious 
therefore to study the methods by which we can predict the deflection of members under lateral 
loads or transverse loads, since it is this form of loading which will generally produce the 
greatest deflection of beams. 

Assumption: The following assumptions are undertaken in order to derive a differential 
equation of elastic curve for the loaded beam 

1. Stress is proportional to strain i.e. hooks law applies. Thus, the equation is valid only for 
beams that are not stressed beyond the elastic limit. 

2. The curvature is always small. 

3. Any deflection resulting from the shear deformation of the material or shear stresses is 
neglected. 

It can be shown that the deflections due to shear deformations are usually small and hence can 
be ignored. 

 

Consider a beam AB which is initially straight and horizontal when unloaded. If under the 
action of loads the beam deflect to a position A'B' under load or infact we say that the axis of 
the beam bends to a shape A'B'. It is customary to call A'B' the curved axis of the beam as the 
elastic line or deflection curve. 

In the case of a beam bent by transverse loads acting in a plane of symmetry, the bending 
moment M varies along the length of the beam and we represent the variation of bending 
moment in B.M diagram. Futher, it is assumed that the simple bending theory equation holds 
good. 

UNIT-V 



 

If we look at the elastic line or the deflection curve, this is obvious that the curvature at every 
point is different; hence the slope is different at different points. 

To express the deflected shape of the beam in rectangular co-ordinates let us take two axes x 
and y, x-axis coincide with the original straight axis of the beam and the y – axis shows the 
deflection. 

Futher,let us consider an element ds of the deflected beam. At the ends of this element let us 
construct the normal which intersect at point O denoting the angle between these two normal 
be di 

But for the deflected shape of the beam the slope i at any point C is defined, 

 

This is the differential equation of the elastic line for a beam subjected to bending in the plane 
of symmetry. Its solution y = f(x) defines the shape of the elastic line or the deflection curve as 
it is frequently called. 

Relationship between shear force, bending moment and deflection: The relationship 
among shear force,bending moment and deflection of the beam may be obtained as 

Differentiating the equation as derived 

 

Therefore, the above expression represents the shear force whereas rate of intensity of loading 
can also be found out by differentiating the expression for shear force 



 

Methods for finding the deflection: The deflection of the loaded beam can be obtained 
various methods. The one of the method for finding the deflection of the beam is the direct 
integration method, i.e. the method using the differential equation which we have derived. 

Direct integration method: The governing differential equation is defined as 

 

Where A and B are constants of integration to be evaluated from the known conditions of slope 
and deflections for the particular value of x. 

Illustrative examples : let us consider few illustrative examples to have a familiarty with the 
direct integration method 

Case 1: Cantilever Beam with Concentrated Load at the end:- A cantilever beam is subjected 
to a concentrated load W at the free end, it is required to determine the deflection of the beam 

 

In order to solve this problem, consider any X-section X-X located at a distance x from the left 
end or the reference, and write down the expressions for the shear force abd the bending 
moment 



 

The constants A and B are required to be found out by utilizing the boundary conditions as 
defined below 

i.e at x= L ; y= 0          -------------------- (1) 

at x = L ; dy/dx = 0      -------------------- (2) 

Utilizing the second condition, the value of constant A is obtained as 

 



Case 2: A Cantilever with Uniformly distributed Loads:- In this case the cantilever beam is 
subjected to U.D.L with rate of intensity varying w / length. The same procedure can also be 
adopted in this case 

 

 

Boundary conditions relevant to the problem are as follows: 

1. At x = L; y = 0 

2. At x= L; dy/dx = 0 

The second boundary conditions yields 

 



Case 3: Simply Supported beam with uniformly distributed Loads:- In this case a simply 
supported beam is subjected to a uniformly distributed load whose rate of intensity varies as w 
/ length. 

 

In order to write down the expression for bending moment consider any cross-section at 
distance of x metre from left end support. 

 

 

Boundary conditions which are relevant in this case are that the deflection at each support must 
be zero. 

i.e. at x = 0; y = 0 : at x = l; y = 0 

let us apply these two boundary conditions on equation (1) because the boundary conditions 
are on y, This yields B = 0. 



Futher  

In this case the maximum deflection will occur at the centre of the beam where x = L/2 [ i.e. at 
the position where the load is being applied ].So if we substitute the value of x = L/2 

 

Conclusions 

(i) The value of the slope at the position where the deflection is maximum would be zero. 

(ii) The value of maximum deflection would be at the centre i.e. at x = L/2. 

The final equation which is governs the deflection of the loaded beam in this case is 

 

By successive differentiation one can find the relations for slope, bending moment, shear force 
and rate of loading. 

Deflection (y) 

 

 

Slope (dy/dx) 

 
 

Bending Moment 

 

So the bending moment diagram would be 



 

Case 4: The direct integration method may become more involved if the expression for entire 
beam is not valid for the entire beam.Let us consider a deflection of a simply supported beam 
which is subjected to a concentrated load W acting at a distance 'a' from the left end. 

 

Let R1 & R2 be the reactions then, 

 

 
Shear Force 

Shear force is obtained by 
taking 

third derivative. 

 

 

Rate of intensity of loading 

 

 



 

These two equations can be integrated in the usual way to find ‘y' but this will result in four 
constants of integration two for each equation. To evaluate the four constants of integration, 
four independent boundary conditions will be needed since the deflection of each support must 
be zero, hence the boundary conditions (a) and (b) can be realized. 

Further, since the deflection curve is smooth, the deflection equations for the same slope and 
deflection at the point of application of load i.e. at x = a. Therefore four conditions required to 
evaluate these constants may be defined as follows: 

(a) at x = 0; y = 0 in the portion AB i.e. 0 ≤ x ≤ a 

(b) at x = l; y = 0 in the portion BC i.e. a ≤ x ≤ l 

(c) at x = a; dy/dx, the slope is same for both portion 

(d) at x = a; y, the deflection is same for both portion 

By symmetry, the reaction R1 is obtained as 

 

Using condition (c) in equation (3) and (4) shows that these constants should be equal, hence 
letting 

K1 = K2 = K 

Hence 



 

Now lastly k3 is found out using condition (d) in equation (5) and equation (6), the condition 
(d) is that, 

At x = a; y; the deflection is the same for both portion 

 



 

ALTERNATE METHOD: There is also an alternative way to attempt this problem in a more 
simpler way. Let us considering the origin at the point of application of the load, 

 

 

Boundary conditions relevant for this case are as follows 

(i) at x = 0; dy/dx= 0 

hence, A = 0 

(ii) at x = l/2; y = 0 (because now l / 2 is on the left end or right end support since we have 
taken the origin at the centre) 



 

Hence the integration method may be bit cumbersome in some of the case. Another limitation 
of the method would be that if the beam is of non uniform cross section, 

 

i.e. it is having different cross-section then this method also fails. 

So there are other methods by which we find the deflection like 

1. Macaulay's method in which we can write the different equation for bending moment for 
different sections. 

2. Area moment methods 

3. Energy principle methods 

THE AREA-MOMENT / MOMENT-AREA METHODS: 

The area moment method is a semi graphical method of dealing with problems of deflection of 
beams subjected to bending. The method is based on a geometrical interpretation of definite 
integrals. This is applied to cases where the equation for bending moment to be written is 
cumbersome and the loading is relatively simple. 

Let us recall the figure, which we referred while deriving the differential equation governing 
the beams. 

 



It may be noted that dx is an angle subtended by an arc element ds and M is the bending moment 
to which this element is subjected. 

We can assume, 

ds = dx [since the curvature is small] 

 = ds 

 

The relationship as described in equation (1) can be given a very simple graphical interpretation 
with reference to the elastic plane of the beam and its bending moment diagram 

 

Refer to the figure shown above consider AB to be any portion of the elastic line of the loaded 
beam and A1B1is its corresponding bending moment diagram. 

Let AO = Tangent drawn at A 

      BO = Tangent drawn at B 

Tangents at A and B intersects at the point O. 

Futher, AA ' is the deflection of A away from the tangent at B while the vertical distance B'B 
is the deflection of point B away from the tangent at A. All these quantities are futher 
understood to be very small. 



                Let ds ≈ dx be any element of the elastic line at a distance x from B and an angle 
 

 

This relationship may be interpreted as that this angle is nothing but the area M.dx of the shaded 
bending moment diagram divided by EI. 

From the above relationship the total angle  between the tangents A and B may be determined 
as 

 

Since this integral represents the total area of the bending moment diagram, hence we may 
conclude this result in the following theorem 

Theorem I: 

 

               Now let us consider the deflection of point B relative to tangent at A, this is nothing 
but the vertical distance BB'. It may be note from the bending diagram that bending of the 
element ds contributes to this deflect
may be considered as the arc of a circle of radius x subtended by the angle  

Hence the total distance B'B becomes  

The limits from A to B have been taken because A and B are the two points on the elastic curve, 
 = M dx / EI as derived earlier 

[ This is infact the moment of area of the bending moment diagram] 

               Since M dx is the area of the shaded strip of the bending moment diagram and x is its 
distance from B, we therefore conclude that right hand side of the above equation represents 
first moment area with respect to B of the total bending moment area between A and B divided 
by EI. 

Therefore,we are in a position to state the above conclusion in the form of theorem as follows: 

Theorem II: 

Deflection of point ‘B' relative to point A  

Futher, the first moment of area, according to the definition of centroid may be written as 
, where  is equal to distance of centroid and a is the total area of bending moment 



Thus,  

Therefore, the first moment of area may be obtained simply as a product of the total area of the 
B.M diagram between the points A and B multiplied by the distance  to its centroid C. 

If there exists an inflection point or point of contreflexure for the elastic line of the loaded beam 
between the points A and B, as shown below, 

 

Then, adequate precaution must be exercised in using the above theorem. In such a case B. M 
diagram gets divide into two portions +ve and –ve portions with centroids C1and C2. Then to 
find an angle  between the tangent sat the points A and B 

 

Illustrative Examples: Let us study few illustrative examples, pertaining to the use of these 
theorems 

Example 1: 

1. A cantilever is subjected to a concentrated load at the free end.It is required to find out the 
deflection at the free end. 

Fpr a cantilever beam, the bending moment diagram may be drawn as shown below 

 



Let us workout this problem from the zero slope condition and apply the first area - moment 
theorem 

 

The deflection at A (relative to B) may be obtained by applying the second area - moment 
theorem 

NOTE: In this case the point B is at zero slope. 

 

Example 2: Simply supported beam is subjected to a concentrated load at the mid span 
determine the value of deflection. 

A simply supported beam is subjected to a concentrated load W at point C. The bending 
moment diagram is drawn below the loaded beam. 

 

Again working relative to the zero slope at the centre C. 

 



 

Example 3: A simply supported beam is subjected to a uniformly distributed load, with a 
intensity of loading W / length. It is required to determine the deflection. 

The bending moment diagram is drawn, below the loaded beam, the value of maximum B.M 
is equal to Wl2 / 8 

 

So by area moment method, 

 

Macaulay's Methods 

             If the loading conditions change along the span of beam, there is corresponding change 
in moment equation. This requires that a separate moment equation be written between each 
change of load point and that two integration be made for each such moment equation. 
Evaluation of the constants introduced by each integration can become very involved. 



Fortunately, these complications can be avoided by writing single moment equation in such a 
way that it becomes continuous for entire length of the beam in spite of the discontinuity of 
loading. 

Note : In Macaulay's method some author's take the help of unit function approximation (i.e. 
Laplace transform) in order to illustrate this method, however both are essentially the same. 

For example consider the beam shown in fig below: 

Let us write the general moment equation using the definition M = ( ∑ M )L, Which means that 
we consider the effects of loads lying on the left of an exploratory section. The moment 
equations for the portions AB,BC and CD are written as follows 

 

It may be observed that the equation for MCD will also be valid for both MAB and MBC provided 
that the terms ( x - 2 ) and ( x - 3 )2are neglected for values of  x less than 2 m and 3 m, 
respectively. In other words, the terms ( x - 2 ) and ( x - 3 )2 are nonexistent for values of x for 
which the terms in parentheses are negative. 

 

 As an clear indication of these restrictions, one may use a nomenclature in which the usual 
form of parentheses is replaced by pointed brackets, namely, ‹ ›. With this change 
in nomenclature, we obtain a single moment equation 

 

 Which is valid for the entire beam if we postulate that the terms between the pointed brackets 
do not exists for negative values; otherwise the term is to be treated like any ordinary 
expression. 

 As an another example, consider the beam as shown in the fig below. Here the distributed load 
extends only over the segment BC. We can create continuity, however, by assuming that the 
distributed load extends beyond C and adding an equal upward-distributed load to cancel its 



effect beyond C, as shown in the adjacent fig below. The general moment equation, written for 
the last segment DE in the new nomenclature may be written as: 

 

 

It may be noted that in this equation effect of load 600 N won't appear since it is just at the last 
end of the beam so if we assume the exploratary just at section at just the point of application 
of 600 N than x = 0 or else we will here take the X - section beyond 600 N which is invalid. 

Procedure to solve the problems 

(i). After writing down the moment equation which is valid for all values of ‘x' i.e. containing 
pointed brackets, integrate the moment equation like an ordinary equation. 

(ii). While applying the B.C's keep in mind the necessary changes to be made regarding the 
pointed brackets. 

llustrative Examples : 

1. A concentrated load of 300 N is applied to the simply supported beam as shown in Fig. 
Determine the equations of the elastic curve between each change of load point and the 
maximum deflection in the beam. 

 

Solution : writing the general moment equation for the last portion BC of the loaded beam, 



 

              To evaluate the two constants of integration. Let us apply the following boundary 
conditions: 

              1. At point A where x = 0, the value of deflection y = 0. Substituting these values in 
Eq. (3) we find C2 = 0.keep in mind that < x -2 >3 is to be neglected for negative values. 

             2. At the other support where x  = 3m, the value of deflection y is also zero. 

substituting these values in the deflection Eq. (3), we obtain 

 

            Having determined the constants of integration, let us make use of Eqs. (2) and (3) to 
rewrite the slope and deflection equations in the conventional form for the two portions. 

 

Continuing the solution, we assume that the maximum deflection will occur in the segment 
AB. Its location may be found by differentiating Eq. (5) with respect to x and setting the 
derivative to be equal to zero, or, what amounts to the same thing, setting the slope equation 
(4) equal to zero and solving for the point of zero slope. 

We obtain 

50 x2– 133 = 0 or x = 1.63 m (It may be kept in mind that if the solution of the equation does 
not yield a value < 2 m then we have to try the other equations which are valid for segment 
BC) 

Since this value of x is valid for segment AB, our assumption that the maximum deflection 
occurs in this region is correct. Hence, to determine the maximum deflection, we substitute x 
= 1.63 m in Eq (5), which yields 

 



The negative value obtained indicates that the deflection y is downward from the x axis.quite 
usually only the magnitude of the deflection, without regard to sign, is desired; this is denoted 
by irected value of deflection. 

              if E = 30 Gpa and I = 1.9 x 106 mm4 = 1.9 x 10 -6 m4 , Eq. (h) becomes 

Then  

Example 2: 

It is required to determine the value of EIy at the position midway between the supports and at 
the overhanging end for the beam shown in figure below. 

 

Solution: 

Writing down the moment equation which is valid for the entire span of the beam and applying 
the differential equation of the elastic curve, and integrating it twice, we obtain 

 

              To determine the value of C2, It may be noted that EIy = 0 at x = 0,which gives C2 = 
0.Note that the negative terms in the pointed brackets are to be ignored Next,let us use the 
condition that EIy = 0 at the right support where x = 6m.This gives 

 

             Finally, to obtain the midspan deflection, let us substitute the value of x = 3m in the 
deflection equation for the segment BC obtained by ignoring negative values of the bracketed 
terms  x - 4 4 and  x - 6 3. We obtain 

 



Example 3: 

A simply supported beam carries the triangularly distributed load as shown in figure. 
Determine the deflection equation and the value of the maximum deflection. 

 

Solution: 

Due to symmetry, the reactions is one half the total load of 1/2w0L, or R1 = R2 = 1/4w0L.Due 
to the advantage of symmetry to the deflection curve from A to B is the mirror image of that 
from C to B. The condition of zero deflection at A and of zero slope at B do not require the use 
of a general moment equation. Only the moment equation for segment AB is needed, and this 
may be easily written with the aid of figure(b). 

Taking into account the differential equation of the elastic curve for the segment AB and 
integrating twice, one can obtain 

 

In order to evaluate the constants of integration,let us apply the B.C'swe note that at the support 
A, y = 0 at x = 0.Hence from equation (3), we get C2 = 0. Also,because of symmetry, the slope 
dy/dx = 0 at midspan where x = L/2.Substituting these conditions in equation (2) we get 

 

Hence the deflection equation from A to B (and also from C to B because of symmetry) 
becomes 

 



Example 4: couple acting 

Consider a simply supported beam which is subjected to a couple M at a distance 'a' from the 
left end. It is required to determine using the Macauley's method. 

 

 

Therefore, writing the general moment equation we get 

 

 



 

INTRODUCTION: 
Column or strut is defined as a member of a structure, which is subjected to axial compressive 
load. If the member of the structure is vertical and both of its ends are fixed rigidly while 
subjected to axial compressive load, the member is known as column, for example a vertical 
pillar between the roof and floor. If the member of the structure is not vertical and one or both of 
its ends are hinged or pin joined, the bar is known as strut i.e. connecting rods, piston rods etc. 
 
FAILURE OF A COLUMN: 
The failure of a column takes place due to the anyone of the following stresses set up in the 
columns: 

a) Direct compressive stresses. 
b) Buckling stresses. 
c) Combined of direct compressive and buckling stresses. 

 
Failure of a Short Column:          
A short column of uniform cross-sectional area A, subjected to an axial compressive load P, as 
shown in Fig. The compressive stress induced is given by; p=P/A     

      
If the compressive load on the short column is gradually increased, a stage will reach when the 
column will be on the point of failure by crushing. The stress induced in the column 
corresponding to this load is known as crushing stress and the load is called crushing load. 
Let,  Pc = Crushing load, 

σc= Crushing stress, and 
A = Area of cross-section 

σc=Pc/A 
AII short columns fail due to crushing. 
 
Failure of a Long Column: 
 A long column of uniform cross-sectional area A and of length l, subjected to an axial 
compressive load P, is shown in Fig. A column is known as long column, if the length of the 
column in comparison to its lateral dimensions, is very large Such columns do not fail by 
crushing alone, but also by bending (also known buckling) as shown in figure. The buckling load 
at which the column just buckles, is known as buckling or crippling load. The buckling load is 
less than the crushing Ioad for a long column. Actually the value of buckling load for long 
columns is low whereas for short columns the value of buckling load is relatively high. 
 
 
 

                                               Columns 



 

  
Let  I = Length of a long column 

P = Load (compressive) at which the column has just buckled 
A = Cross-sectional area of the column 
e = Maximum bending of the column at the centre 
σo = Stress due to direct load = P/A 
σb = Stress due to bending at the centre of the column = (P x e) /Z 
 

Where, 
Z = Section modulus about the axis of bending. 

The  extreme stresses on the mid-section are given by: 
Maximum stress = σo + σb  and 
Minimum  stress = σo – σb 

The column will fail when maximum stress (i.e., σo + σb) is more than the crushing stress σc. But 
in case of long columns, the direct compressive stresses are negligible as compared to buckling 
stresses. Hence very long columns are subjected to buckling stresses only. 
 
Assumptions made in the Euler’s Column theory: 
The following assumptions are made in the Euier's column theory: 

1. The column is initially perfectly straight and the load is applied axially. 
2. The cross-section of the column is uniform throughout its length. 
3. The column material is perfectly elastic, homogeneous and isotropic and obeys Hooke's 

law. 
4. The length of the column is very large as compared to its lateral dimensions. 
5. The direct stress is very small as compared to the bending stress. 
6. The column will fail by buckling alone. 
7. The self-weight of column is negligible. 

 
End conditions for Long Columns:In case of long columns, the stress due to direct load 
is very small in comparison with the stress due to buckling. Hence the failure of long columns 



takes place entirely due to buckling (or bending). The following four types of end conditions of 
the columns are important: 
1. Both the ends of the column are hinged (or pinned). 
2. One end is frxed and the other end is free. 
3. Both the ends of the column are frxed. 
4. One end is frxed and the other is pinned. 
 
For a hinged end, the deflection is zero. For a fixed end the deflection and slope are zero. 
For a free end the deflection is not zero. 
 
Sign Conventions:  
The following sign conventions for the bending of the columns will be used : 
1. A moment which will bend the column with its convexity towards its initial central line as 

shown in Fig. (a) is taken as positive. In Fig (a), AB represents the initial centre line of a 
column. Whether the column bends taking the shape AB' or AB", the moment producing this 
type of curvature is positive. 

2. A moment which will tend to bend the column with its concavity towards its initial centre line 
as shown in Fig. (b) is taken as negative. 

 
 
Expression for crippling load when both the ends of the Column are hinged: 
The load at which the column just buckles (or bends) is called crippling load. Consider a column 
AB of length l and uniform cross-sectional area, hinged at both of its ends A and B. Let P be the 
crippling load at which the column has just buckled. Due to the crippling load, the column wiII 
deflect into a curved form ACB as shown in Fig. 

 



Consider any section at a distance r from the end A. 
Let  y = Deflection (lateral displacement) at the section.  

The moment due to the crippling load at the section = -P x y (- ve sign is taken due to sign 
convention) 

 
Where C1 and C2 are the constants of integration and the values are obtained as follows:  
 At A, x = 0 and y = 0  

 
As if C1 = 0, then if C2 is also equals to zero, then from Eqn no. (i), we will find that y = 0. This 
means that the bending of the column will be zero or the column will not bend at all, which is not 
true. 

 
Taking the least practical value. 



 
Expression for crippling load when one end of the column is fixed and the 
other is free: 
Consider a column AB, of length l and uniform cross-sectional area, fixed at the end A and free 
at the end B. The free end will sway sideways when load is applied at free end and curvature in 
the length I will be similar to that of upper half of the column whose both ends are hinged. 
Let P is the crippling load at which the column has just buckled. Due to the crippling load P, the 
column will deflect as shown in Fig., in which AB is the original position of the column and AB', is 
the deflected position due to crippling load P.  

Consider any section at a distance x from the fixed end A. 
Let y = Deflection (or lateral displacement) at the section 

a = Deflection at the free end B' 
Then moment at the section due to the crippling load = P (a - y) 
(+ve. sign is taken due to sign convention) 

 

 
The solution of the Differential Equation is: 



 

 
Where C1 and C2 are the constants of integration and the values are obtained from the boundary 
conditions, which are as follows:  
 

i. At fixed end, the deflection as well as slope will be zero. 

 

 
But at the free end of the column, x = l and y = a, 



 

 
Expression for the crippling load when both ends of the column are fixed: 
Consider a column AB of length I and uniform cross-sectional area fixed at both ends A and B as 
shown in Fig. Let P is the crippling load at which the column has buckled. Due to the crippling 
load P, the column will deflect as shown. Due to fixed ends, there will be fixed end moments say 
M0 at the ends A and B. The fixed end moments will be acting in such direction so that slope at 
the fixed ends becomes zero. 
Consider a section at a distance x from the end A. Let the deflection of the column at the section 
is y. As both the ends of the column are fixed and the column carries a crippling load, there will 
be some fixed end moments at A and B. 

 
Let M0 = Fixed end moments at A and B. 



 

 
Substituting the value x = 0 and y = 0 in equation no (i), we get. 

 
Differentiating equation (i), with respect to x, we get. 

  

 



 
Expression for the crippling load when one end of the column is fixed and 
the other end is hinged (or pinned): 
Consider a column AB of length I and uniform cross-sectional area, fixed at the end A and 
hinged at the end B as shown in Fig. Let P is the crippling load at which the column has buckled. 
Due to the crippling load P, the column will deflect as shown in Fig. There will be fixed end 
moment (M0) at the fixed end A. This will try to bring back the slope of deflected column zero at 
A. Hence it will be acting anticlockwise at A. The fixed end moment M0 at A is to be balanced. 
This will be balanced by a horizontal reaction (H) at the top end B as shown in Fig. 
 
Consider a section at a distance x from the end A 
Let  y   =  Deflection of the column at the section, 

M0 =  Fixed end moment at A, and 
H   =  Horizontal reaction at B. 

 

 

 



 

 

 

 



Effective length (or equivalent length) of a column: 
The effective length of a given column with given end conditions is the length of an equivalent 
column of the same material and cross-section with hinged ends and having the value of the 
crippling load equal to that of the given column. Effective length is also called equivalent length. 
Let  Le = Effective length of a column 

I    = Actual length of the column and 
P  = Crippling load for the column 

Then the crippling load for any type of end condition is given by 

      
The crippling load (P) in terms of actual length and effective length and also the relation between 
effective length and actual length are given in Table below. 

 
There are two values of moment of inertia i.e., Ixx and Iyy. 
The value of I (moment of inertia) in the above expressions should be taken as the least value of 
the two moments of inertia as the column will tend to bend in the direction of least moment of 
inertia. 
Crippling stress in Terms of Effective Length and Radius of Gyration: 

 



 
Slenderness Ratio:  
The ratio of the actual length of the column to the least radius of gyration of the column is known 
as slenderness ratio. 

 
Limitations of the Euler’s Formula: 

 
if the slenderness ratio i.e. (l/k) is small the crippling stress (or the stress at failure) will be high. 
But for the column material the crippling-stress cannot be greater than the crushing stress. 
Hence when the slenderness ratio is less than a certain limit Euler's formula gives a value of 
crippling stress greater than the crushing stress. In the limiting case we can find the value of l/k, 
for which the crippling stress is equal to crushing stress. 
 
For example, for a mid steel column with both ends hinged.  
Crushing stress = 330 N/mm2 

Young's modulus, E = 2.1 x 105 N/mm2 

Equating the crippling stress to the crushing stress corresponding to the minimum value of 
slenderness ratio, we get 

 
Hence if the slenderness ratio is less than 80 for mild steel column with both ends hinged, the Euler’s 
formula will not hold good. 



Problem1. A hollow mild steel tube 6 m long 4 cm internal diameter and 6 mm thick is used as a 
strut with both ends hinged. Find the crippling load and safe load taking factor of 
safety as 3. Take E = 2 x 105 N / mm2. 

 

 
 
Problem2.  A simply supported beam of length 4m is subjected to a uniformly distributed load of 

30 KN/m over the whole span and deflects 15 mm at the centre. Determine the 
crippling load the beam is used as a column with the following conditions: 
(i) One end fixed and another end hinged 
(ii) Both the ends pin jointed. 

 



 
Rankine’s Formula: 
We have learnt that Euler's formula gives correct results only for very long columns. But what 
happens when the column is a short or the column is not very long. On the basis of results of 
experiments performed by Rankine, he established an empirical formula which is applicable to 
all columns whether they are short or long. The empirical formula given by Rankine is known as 
Rankine’s formula, which is given as 

 
For a given column material the crushing stress σc is a constant. Hence the crushing load Pc 
(which is equal to σc x A) will also be constant for a given cross-sectional area of the column. In 
equation (i), Pc is constant and hence value of P depends upon the value of PE. But for a given 
column material and given cross-sectional area, the value of PE depends upon the effective 
length of the column. 
 

(i) If the column is a short, which means the value of Le is small, then the value of PE will 
be large. Hence the value of 1/PE will be small enough and is negligible as compared 
to the value of 1/PC . Neglecting the value of 1/PE  in equation (i), we get, 

 
Hence the crippling load by Rankine's formula for a short column is approximately 
equal to crushing load. Also we have seen that short columns fail due to crushing. 
 

(ii) If the column is long, which means the value of Le is large. Then the value of PE will be 
small and the value of 1/PE will be large enough compared with 1/PC.Hence the value 
of 1/PC may be neglected in equation (i). 

    
(iii) Hence the crippling load by Rankine's formula for long columns is approximately equal 

to crippling load given by Euler's formula. 

 



 

 

 


